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Foreword
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spreading of the SARS-CoV-2 virus infection.
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both the theory and practical applications of systems based on intersection
types and related approaches. Topics for submitted papers include, but are not
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• Formal properties of systems with intersection types.

• Results for related systems, such as union types, refinement types, or
singleton types.

• Applications to lambda calculus, pi-calculus and similar systems.

• Applications for programming languages, program analysis, and program
verification.

• Applications for other areas, such as database query languages and pro-
gram extraction from proofs.

• Related approaches using behavioural/intensional types and/or denota-
tional semantics to characterize computational properties.

• Quantitative refinements of intersection types.

The abstracts contained in this document were accepted for presentation to
the Turin edition of the workshop, by the program committee formed by:

Ugo de’ Liguoro (Turin University)

Jeremy Siek (Indiana University Bloomington)

Andrej Dudenhefner (Saarland University)

Antonio Bucciarelli (Université Paris Diderot)
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Introduction Intersection types are broadly used in type assignment systems but are seldom
understood as logical formulas. Exceptions include [4, 8], and the line of research on intersection
logic [5, 6, 3], initiated by S. Ronchi Della Rocca and L. Roversi. The underlying semantics
accompanying those efforts is proof-theoretical. However, if we think of intersection formulas as
independent of term-assignment, we naturally ask for mathematical semantics of formulas that
could be defined and investigated without any direct reference to λ-terms.

Here, we outline the first (to the authors’ knowledge) attempt to define a sound and complete
possible-world (Kripke) semantics for intersection logic. The approach develops from the idea
of proof-search, or type inhabitation algorithm, understood as a game.

Adaptation of previous methods [7] to intersection logic is difficult for two reasons. First, for
proof construction one must consider parallel inhabitation problems, where a single proof has
to satisfy multiple constraints. This complicates proof syntax (we use matrices of formulas) and
model definition. Second, intersection formulas may be non-uniform, e.g. p∩ (q→ p), exhibiting
“functional” and “atomic” behavior. To accommodate both, our models must satisfy a global
condition of being “monotone”.

Formulas and matrices Formulas (ranged over by σ,τ,ρ) are Barendregt–Coppo–Dezani
(BCD) intersection types [1], i.e. σ,τ ::= p | ω | σ→ τ | σ∩τ , where atoms are ranged over by p,q.
The preorder ≤ is intersection type subtyping [1, Def. 2.3]. The intersection type constructor (∩)
is assumed commutative, associative, and idempotent. We write τ ⊆ σ if σ = τ ∩ρ. A formula σ
is functional if σ =⋂

i∈I(σi→ τi), and we define lhs(σ) =⋂
i∈I σi and rhs(σ) =⋂

i∈I τi.
A column (ranged over by γ,δ,ν) of height m is a vector of m formulas. A column is called

functional if all its coordinates are functional, otherwise it is atomic.
An m×n-matrix (ranged over by Γ) of formulas σij , where i = 1 . . .m and j = 1 . . .n, is

written [σij ]i=1...m
j=1...n . If Γ is an m×n-matrix, and γ is a column of height m, then Γ,γ stands for

an m× (n+1)-matrix obtained by adding γ as the (n+1)-st column.
Let f : {1, . . . ,m2} → {1, . . . ,m1} be onto. If γ = (σ1, . . . ,σm2), then f(γ) is a column of

height m1 whose k-th coordinate is ⋂f(i)=k σi. And if δ = (τ1, . . . , τm1), then f−1(δ) is a column
of height m2 whose j-th coordinate is τf(j). The notation f−1 extends to matrices columnwise.

We write Γ1 vf Γ2 if there exist columns γ1, . . . ,γk such that Γ2 is f−1(Γ1),γ1, . . . ,γk up to
column permutation. The relations≤,⊆ and functions lhs,rhs extend to columns coordinatewise.
If γ≤ δ (resp. δ⊆ γ), for some column γ of Γ, then we write Γ≤ δ (resp. δ⊆Γ). If γ= (σ1, . . . ,σm)
and δ = (τ1, . . . , τm), then γ⇒ δ denotes the column (σ1→ τ1, . . . ,σm→ τm).



2 Kripke Semantics for Intersection Formulas

Sequent calculus Judgments (cf. molecules of [6]) take the form Γ ` γ, where Γ is a matrix
and γ is a column of the same height. The following sequent calculus is sound and complete
(Proposition 1) for BCD inhabitation [1, Def. 2.5].

(Γ≤ γ)
(A)

Γ ` γ
(Ω)

Γ ` (ω, . . . ,ω)
Γ ` γ Γ,γ ` δ

(Cut)
Γ ` δ

Γ,rhs(γ) ` δ Γ ` lhs(γ) (γ ⊆ Γ)
(L)

Γ ` δ
f−1(Γ),γ ` δ

(R)
Γ ` f(γ⇒ δ)

For Γ = [σij ]i=1...m
j=1...n and γ = (τ1, . . . , τm), we write Γ `bcd γ if there exists a λ-term M such

that {x1 : σi1, . . . ,xn : σin} `bcd M : τi, for i= 1 . . .m.
Proposition 1. We have Γ ` γ iff Γ `bcd γ.

Kripke-style semantics We define a Kripke modelM= 〈C,≤,G,H〉, where: C is a nonempty
set of states; ≤ is a partial order on C; G is a function that assigns an atomic matrix ΓC to every
state C ∈ C; H is a function that assigns a surjection f to every pair C ≤D, written C ≤f D.
Additionally, for every C,D,E ∈ C we require: if C ≤f D, then ΓC vf ΓD; if C ≤f D ≤g E, then
C ≤g◦f E; and C ≤id C.
Forcing: Let ΓC and δ be of height m. The state C forces δ, written C 
 δ, if either δ is
equivalent to (ω, . . . ,ω) under subtyping, or one of the following holds:
• The column δ is atomic and ΓC ≤ δ.
• The column δ is functional, and for all D ∈ C such that C ≤f D and for every column ν
such that ν ⊆ f−1(δ) and D 
 lhs(ν) we have D 
 rhs(ν).

A model is monotone1 if for every state C and γ such that ΓC ≤ γ, we have C 
 γ.
We write C 
 Γ if C forces all columns in Γ. Finally, the notation Γ 
 γ means that:

For every monotone modelM and every state C, if C 
 Γ, then C 
 γ.
Example 2. Let δ = ((p→ ω→ p)∩ (ω→ p→ p)) be a column of height 1 and C = {1,2}, where
Γ1 = () is a 1×0-matrix, Γ2 =

(p ω
ω p

)
is a 2×2-matrix, and 1≤f 2, where f : {1,2}→ {1} is such

that f(1) = f(2) = 1. For ν =
(p→ω→p

ω→p→p

)
, we have that 1 ≤f 2, ν ⊆ f−1(δ), and 2 
 lhs(ν) =

(p
ω

)
.

However, we have that 21 rhs(ν) =
(ω→p

p→p

)
, because 2
 lhs(rhs(ν)) =

(ω
p

)
, but 21 rhs(rhs(ν)) =

(p
p

)
.

Overall, we have that 1 1 δ, providing a countermodel. Therefore, ∅ 1 δ. Besides, ∅ 6`bcd δ.

Game playing The game is played by two competitors, who influence a game position, which
is a judgment Γ ` δ. The existential player, ∃ros, tries to prove δ from Γ, i.e. to reach a position
in which δ = (ω, . . . ,ω) or Γ≤ δ. The universal player, ∀phrodite, attempts to refute his claims.
Similarly to [7, Section 2], possible game moves essentially correspond to rules (L) and (R).
Therefore, a winning ∃ros’ strategy leads to a cut-free sequent calculus proof. Complementarily,
from a winning ∀phrodite’s strategy a Kripke countermodel can be constructed.
Theorem 3 (Soundness and Completeness). We have ∅ `bcd σ iff ∅ 
 (σ).

Proof Sketch. Soundness is shown by Proposition 1 followed by structural induction with respect
to proofs. Completeness is shown by constructing a countermodel from a winning strategy of
∀phrodite using methods of [7, Section 2].

1Model monotonicity is naturally satisfied if we restrict attention to formulas that have uniform structure, i.e.
refine some simple type in the sense of [2], such as in Example 2.
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Extended abstract1

Call-by-Push-Value. The Call-by-Push-Value (CBPV) paradigm, introduced by P.B. Levy [34, 35],
distinguishes between values and computations under the slogan “a value is, a computation does”. It
subsumes the λ -calculus by adding some primitives that allow to capture both the Call-by-Name (CBN)
and Call-by-Value (CBV) semantics. CBN is a lazy strategy that consumes arguments without any
preliminary evaluation, potentially duplicating work, while CBV is greedy, always computing arguments
disregarding whether they are used or not, which may prevent a normalising term from terminating,
e.g. (λx.I)Ω, where I = λx.x and Ω = (λx.xx)(λx.xx).

Essentially, CBPV introduces unary primitives thunk and force. The former freezes the execution
of a term (i.e. it is not allowed to compute under a thunk) while the latter fires again a frozen term.
Informally, force(thunk t) is semantically equivalent to t. Resorting to the paradigm slogan, thunk
turns a computation into a value, while force does the opposite. Thus, CBN and CBV are captured
by conveniently labelling a λ -term using force and thunk to pause/resume the evaluation of a subterm
depending on whether it is an argument (CBN) or a function (CBV). In doing so, CBPV provides a unique
formalism capturing two distinct λ -calculi strategies, thus allowing to study operational and denotational
semantics of CBN and CBV in a unified framework.

Bang calculus. T. Ehrhard [23] introduces a typed calculus, that can be seen as a variation of CBPV,
to establish a relation between this paradigm and Linear Logic (LL). A simplified version of this formal-
ism is later dubbed Bang calculus [24], showing in particular how CBPV captures the CBN and CBV
semantics of λ -calculus via Girard’s translations of intuitionistic logic into LL. The Bang calculus is
essentially an extension of λ -calculus with two new constructors, namely bang (!) and dereliction (der),
together with the reduction rule der(! t) 7→ t. There are two notions of reduction for the Bang calculus,
depending on whether it is allowed to reduce under a bang constructor or not. They are called strong and
weak reduction respectively. Indeed, it is weak reduction that makes bang/dereliction play the role of the
primitives thunk/force. Hence, these modalities are essential to capture the essence behind the CBN–
CBV duality. A similar approach appears in [38], studying (simply typed) CBN and CBV translations
into a fragment of IS4, recast as a very simple λ -calculus equipped with an indeterminate lax monoidal
comonad.

Non-Idempotent Types. Intersection types, pioneered by [15, 16], can be seen as a syntactical tool
to denote programs. They are invariant under the equality generated by the evaluation rules, and type
all and only all normalising terms. They are originally defined as idempotent types, so that the equation

1The full version of this work is currently submitted to an international conference.
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σ ∩σ = σ holds, thus preventing any use of the intersection constructor to count resources. On the other
hand, non-idempotent types, pioneered by [25], are inspired from LL, they can be seen as a syntactical
formulation of its relational model [27, 11]. This connection suggests a quantitative typing tool, being
able to specify properties related to the consumption of resources, a remarkable investigation pioneered
by the seminal de Carvalho’s PhD thesis [17] (see also [19]). Non-idempotent types have also been
used to provide characterisations of complexity classes [8]. Several papers explore the qualitative and
quantitative aspects of non-idempotent types for different higher order languages, as for example Call-
by-Name, Call-by-Need and Call-by-Value λ -calculi, as well as extensions to Classical Logic. Some
references are [13, 22, 4, 3, 33]. Other relational models were directly defined in the more general
context of LL, rather than in the λ -calculus [18, 30, 21, 20].

An interesting recent research topic concerns the use of non-idempotent types to provide bounds of
reduction lengths. More precisely, the size of type derivations has often been used as an upper bound to
the length of different evaluation strategies [36, 22, 31, 13, 32, 33]. A key notion behind these works is
that when t evaluates to t ′, then the size of the type derivation of t ′ is smaller than the one of t, thus the
size of type derivations provides an upper bound for the length of the reduction to a normal form as well
as for the size of this normal form.

A crucial point to obtain exact bounds, instead of upper bounds, is to consider only minimal type
derivations, as the ones in [17, 9, 21]. Another approach was taken in [1], which uses an appropriate
notion of tightness to implement minimality, a technical tool adapted to Call-by-Value [28, 3] and Call-
by-Need [4].

Contributions and Related Works

This work presents a reformulation of the untyped Bang calculus, and proposes a quantitative study of it
by means of non-idempotent types.

The Untyped Reduction. The Bang calculus in [23] suffers from the absence of commutative con-
versions [37, 14], making some redexes to be syntactically blocked when open terms are considered. A
consequence of this approach is that there are some normal forms that are semantically equivalent to
non-terminating programs, a situation which is clearly unsound. This is repaired in [24] by adding com-
mutative conversions specified by means of σ -reduction rules, which are crucial to unveil hidden (value)
redexes. However, this approach presents a major drawback since the resulting combined reduction
relation is not confluent.

Our revisited Bang calculus, called λ !, fixes these two problems at the same time. Indeed, the syntax
is enriched with explicit substitutions, and σ -equivalence is integrated in the primary reduction system by
using the distance paradigm [5], without any need to unveil hidden redexes by means of an independent
relation. This approach restores confluence.

The Untyped CBN and CBV Encodings. CBN and CBV (untyped) translations are extensively
studied in [29]. The authors establish two encodings cbn and cbv, from untyped λ -terms into untyped
terms of the Bang calculus, such that when t reduces to u in CBN (resp. CBV), cbn(t) reduces to cbn(u)
(resp. cbv(t) reduces to cbv(u)) in the Bang calculus. However, CBV normal forms in λ -calculus are not
necessarily translated to normal forms in the Bang calculus.

Our revisited notion of reduction naturally encodes (weak) CBN as well as (open) CBV. These two
notions are dual: weak CBN forbids reduction inside arguments, which are translated to bang terms,
while open CBV forbids reduction under λ -abstractions, also translated to bang terms. More precisely,
we simply extend to explicit substitutions the original CBN translation from λ -calculus to the Bang
calculus, which preserves normal forms, but we subtly reformulate the CBV one. In contrast to [29], our
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CBV translation does preserve normal forms.
The Typed System. We propose a type system for the λ !-calculus, called U , based on non-

idempotent intersection types. System U is able to fully characterise normalisation, in the sense that a
term t is U -typable if and only if t is normalising. More interestingly, we show that system U has also
a quantitative flavour, in the sense that the length of any reduction sequence from t to normal form plus
the size of this normal form is bounded by the size of the type derivation of t. We show that system U
also captures the non-idempotent intersection type system for CBN given in [25, 17], and extended with
explicit substitutions as in [32], as well as a new type system V that we define for CBV, as defined in [6].
System V characterises termination of open CBV, in the sense that t is typable in V if and only if t is ter-
minating in open CBV. This can be seen as another (collateral) contribution of this work. Moreover, the
CBV embedding in [29] is not complete with respect to their type system for CBV. System V recovers
completeness (left as an open question in [29]). Finally, an alternative CBV encoding of typed terms is
proposed. This encoding is not only sound and complete, but now enjoys preservation of normal-forms.

A Refinement of the Type System Based on Tightness. A major observation concerning β -
reduction in λ -calculus (and therefore in the Bang calculus) is that the size of normal forms can be
exponentially bigger than the number of steps to these normal forms. This means that bounding the
sum of these two integers at the same time is too rough, not very relevant from a quantitative point of
view. Following ideas in [17, 9, 1], we go beyond upper bounds. Indeed, another major contribution of
this work is the refinement of the non-idempotent type system U to another type system E , equipped
with constants and counters, together with an appropriate notion of tightness (i.e. minimality). This new
formulation fully exploits the quantitative aspect of the system, in such a way that upper bounds pro-
vided by system U are refined now into independent exact bounds for time and space. More precisely,
given a tight type derivation Φ with counters (b,e,s) for a term t, we can show that t is normalisable in
(b+e)-steps and its normal form has size s. The opposite direction also holds. Therefore, exact measures
concerning the dynamic behaviour of t, are extracted from a static (tight) typing property of t.

Acknowledgements. This is an extended abstract of [12], to appear in FLOPS 2020. This work has
been partially funded by the projects ECOS-Sud PA17C01 and LIA INFINIS/IRP SINFIN.
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Institut Universitaire de France, France

Simona Ronchi Della Rocca
Dipartimento di Informatica, Università di Torino, Italy

Extended abstract

In these last years there has been a growing interest in pattern λ -calculi [13, 10, 7, 11, 9, 12] which are
used to model the pattern-matching primitives of functional programming languages (e.g. OCAML, ML,
Haskell) and proof assistants (e.g. Coq, Isabelle). These calculi are extensions of λ -calculus: abstractions
are written as λp.t, where p is a pattern specifying the expected structure of the argument. In this work
we restrict our attention to pair patterns, which are expressive enough to illustrate the challenging notion
of solvability/observability in the framework of pattern λ -calculi. More precisely, we consider a pattern
calculus called p-calculus, introduced in [2], with explicit pattern-matching and reduction rules at a
distance [1]. The p-calculus is inspired from the Λp-calculus in [4]. The use of explicit pattern-matching
becomes very appropriate to implement different evaluation strategies, thus giving rise to different
languages with pattern-matching [7, 8, 3].

We aim to study observability of the p-calculus, which corresponds to solvability of λ -calculus. Let us
first recall this last notion: a closed λ -term t is solvable if there is n≥ 0 and there are terms u1, ...,un such
that tu1...un reduces to the identity. Closed solvable terms represent meaningful programs: if t is closed
and solvable, then t can produce any desired result when applied to a suitable sequence of arguments.
The relation between solvability and meaningfulness is also evident in the semantics: it is sound to equate
all unsolvable terms, as in Scott’s original model D∞ [14]. This notion can be easily extended to open
terms, through the notion of head-context, which does the job of both closing the term and then applying
it to an appropriate sequence of arguments. Thus a term t is solvable if there is a head-context H such that,
when H is filled by t, then H[t] is closed and reduces to the identity.

In order to extend the notion of solvability to the p-calculus, it is clear that pairs have to be taken
into account. A relevant question is whether a pair should be considered as meaningful in any case.
At least two choices are possible: a lazy semantics considering any pair to be meaningful, or a strict
one requiring both of its components to be meaningful. In the operational semantics we supply for the
p-calculus the constant fail is different from 〈fail,fail〉: if a term reduces to fail we do not have
any information about its result, but if it reduces to 〈fail,fail〉 we know at least that it represents a
pair. In fact, being a pair is already an observable property, which in particular is sufficient to unblock an
explicit matching, independently from the observability of its components. As a consequence, a term t is
defined to be observable iff there exists a head-context H such that H[t] is closed and reduces to a pair.
Thus for example, the term 〈t,t〉 is always observable, also in case t is not observable. Observability
turns out to be conservative with respect to the notion of solvability for the λ -calculus.

We characterize observability for the p-calculus through two different and complementary notions
related to a type assignment system with non-idempotent intersection types that we call P . The first one
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is typability, concerning the possibility to construct a typing derivation for a given term, and the second
one is inhabitation, concerning the possibility to construct a term from a given typing. More precisely, we
first supply a notion of canonical form such that reducing a term to some canonical form is a necessary
but not a sufficient condition for being observable. In fact, canonical forms may contain blocking explicit
matchings, so that we need to guess whether or not there exists a substitution being able to simultaneously
unblock all these blocked forms. In contrast, if a λ -term is in canonical form, it is always possible to find
suitable arguments to feed it in order to produce any desired term (in fact, the identity). Hence typable
λ -terms are observable. This is somehow an accidental property, and for more general calculi, like the
p-calculus, the fact that a term t has a type does not guarantee that suitable arguments to be applied to t
in order to produce the desired observable result do exist. Our type system P characterizes canonical
forms: a term t has a canonical form if and only if it is typable in system P . Types are of the shape
A1→ A2→ ...→ An→ σ , for n ≥ 0, where the Ai’s are multisets of types and σ is a type. The use of
multisets to represent the non-idempotent intersection is standard, namely [σ1, ...,σm] is just a notation
for σ1∩ ...∩σm. By using type system P we can supply the following characterization of observability:
a closed term t is observable if and only if t is typable in system P , let say with a type of the shape
A1→ A2→ ...→ An→ σ (where σ is a product type), and for all 1≤ i≤ n there is a term ti such that
every type in Ai is inhabited by ti. In fact, if ui inhabits all the types in Ai, then tu1...un, resulting from
plugging t into the head context �u1...un, reduces to a pair. The extension of this notion to open terms is
obtained by suitably adapting the notion of head context.

Clearly, the property of being observable is undecidable, exactly as the solvability property for λ -
calculus. More precisely, the property of having canonical form is undecidable, since the λ -terms that are
typable in system P , characterizing terms having canonical form, are exactly the solvable ones. But our
characterization of observability through the inhabitation property of P does not add a further level of
undecidability: in fact we prove that inhabitation for system P is decidable,in constrast to the idempotent
case where the problem is known to be undecidable [15]. The inhabitation algorithm presented here is a
non trivial extension of the one given in [5, 6] for the λ -calculus, the difficulty of the extension being due
to the explicit pattern matching and to the type information of patterns.

This work simplifies a previous study of observability for pattern calculi in [4], not only from the
operational semantics of the pattern calculus, but also from the typing system point of view.
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Deep inference is a logical formalism developed inside the framework of the calculus of
structures. It exhibits proofs with contexts, which avoids some syntactic bureaucracies [6].
The atomic λ-calculus was designed as a Curry-Howard interpretation of deep-inference for
intuistionistic logic [7]. It is an extension of λ-calculus with sharing mechanisms resembling
explicit substitutions. When duplication of shared terms is needed, it is carried out atomically:
constructor by constructor. These two features, sharing and atomic duplication, are at the
core of fully lazy sharing [1]. Whereas this mechanism is usually specified by means of sharing
graphs or other graphical formalisms, atomic λ-calculus is to our knowledge the first algebraic
representation of the λ-calculus which can express it in a natural way. As expected, the atomic
λ-calculus can be typed inside the deep inference formalism, but also inside the sequent calculus.
Typed atomic λ-calculus enjoys the desired properties of subject reduction, confluence, and
strong normalisation [8].

Still, the calculus has not been extensively studied until today. It is also strongly syntactical:
there is still no known model for it. We approach this calculus throughout non-idempotent
intersection types [5]. We hope that their semantical flavour [4] will help us uncover some of
the calculus’ aspects.

We define a quantitative type system characterising strong normalisation, i.e we use non-
idempotent types instead of the more standard idempotent ones. Our type system follows the
sequent calculus style. We prove the correctness of our type system: every typed term strongly
normalises, as well as completeness: every strongly normalisable term is typable. Our proof of
correctness is an alternative to the original one using candidates of reducibility [8].

Usually, proofs of termination using a quantitative discipline are straightforward (a survey
can be found in [3]). During the substitution of a variable x by a term u, typing derivations
for the types of u are dispatched in place of the axioms rules of x, but none is duplicated.
Therefore, the size of the typing derivation can only decrease during reduction. But within the
atomic λ-calculus, the duplication of the constructors induces an introduction of new resources
(typically variables). For instance, to duplicate an application uv, we have to substitute every
variable x bound to uv by an application of two new variables, say y and z where y is bound
to u and z to v. By doing that, we duplicate the types of u and v to be able to type the new
variables.

However, we are able to give a characterisation of termination through a subtle transforma-
tion of terms, that we call expansion. The idea of an expansion is to anticipate the creation of
the duplicates. Then, we show that the size of the typing derivation of the expansion of a term
decreases along any reduction step.

Our main contribution is an original type system for atomic λ-calculus, which is the first
quantitative one, to our knowledge. Because we have to use a mechanism to reveal the resource-
consuming nature of reduction in a quantitative typing discipline, we believe that a quantitative
sequent calculus type system is not the most appropriate for atomic λ-calculus. It strengthens
the idea that we should be looking for a way to describe intersection types directly in deep in-
ference. This has already been studied but never led to a result on the full atomic λ-calculus [9].
We believe that our work will contribute to the quest of such typing system.
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1 Introduction

We present the syntax, semantics, and typing rules of Bull [14], a prototype theorem prover based on
the ∆-framework, i.e. a fully-typed lambda-calculus decorated with union and intersection types, as de-
scribed in [15, 9]. Bull also implements the subtyping algorithm of [10] for the Type Theory Ξ of [2].
Bull has a command-line interface where the user can declare axioms, terms, and perform computations
and some basic terminal-style features like error pretty-printing, subexpressions highlighting, and file
loading. Moreover, it can typecheck a proof or normalize it. These terms can be incomplete, therefore
the typechecking algorithm uses unification to try to construct the missing subterms. Bull uses the syn-
tax of Berardi’s Pure Type Systems [3] to improve the compactness and the modularity of the kernel.
Abstract and concrete syntax are mostly aligned and similar to the concrete syntax of Coq. Bull uses a
higher-order unification algorithm for terms, while typechecking and partial type inference are done by
a bidirectional refinement algorithm, similar to the one found in [1]. The refinement can be split into two
parts: the essence refinement and the typing refinement. The bidirectional refinement algorithm aims to
have partial type inference, and to give as much information as possible to the unifier. For instance, if we
want to find a ?y such that `Σ 〈λx:σ .x,λx:τ.?y〉 : (σ → σ)∩ (τ → τ), we can infer that x:τ `?y : τ and
that o?y o =β x. Binders are implemented using commonly-used de Bruijn indices. We have defined a
concrete language syntax that will allow user to write ∆-terms. We have defined the reduction rules and
an evaluator. We have implemented from scratch a refiner which does partial typechecking and type re-
construction. We have experimented Bull with classical examples of the intersection and union literature,
such as the ones formalized by Pfenning with his Refinement Types in LF [12].

Syntax of terms. The abstract syntax for the language is sketched below. The main differences with the
∆-framework [9] are the additions of a placeholder and meta-variables, used by the refiner. We also added
a let operator and changed the syntax of the strong sum so it looks more like the concrete syntax used
in the implementation. A meta-variable ?x[∆1; ...;∆n] uses suspended substitutions, inspired by [1] and
intuitively explained as follows: if we want to unify (λx:σ .?y)c1 with c1, we could unify ?y with c1 or
with x, the latter being the preferred solution. However, if we normalize (λx:σ .?y)c1, we should record
the fact that c1 can be substituted by any occurrence of x appearing the term to be replaced by ?y; the term
is actually noted (λx:σ .?y[x])c1 and reduces to ?y[c1], noting that c1 has replaced x. Finally, following
the Cervesato-Pfenning jargon [5], applications are in spine form, i.e. the arguments of a function are
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stored together in a list, exposing the head of the term separately.

∆,σ ::= s | c | x | Sorts, constant, variables and placeholders
| ?x[∆; ...;∆] Meta-variable
| let x:σ := ∆ in ∆ Local definition
| Πx:σ .∆ | λx:σ .∆ Dependent product and λ -abstraction
| ∆S | σ ∩σ | σ ∪σ Application, intersection and union
| 〈∆,∆〉 | pr1 ∆ | pr2 ∆ Strong pair, left and right projection
| smatch ∆ return σ with [x:σ ⇒ ∆ | x:σ ⇒ ∆] Strong sum
| in1 σ ∆ | in2 σ ∆ | coeσ ∆ Left/right injection and coercions

S ::= () | (S;∆) Spines

Concrete syntax is mostly aligned with the abstract one with the intention to mimic Coq.
Environments. There are four kinds of environments, namely 1) the global environment (noted Σ).
The global environment holds constants which are fully typechecked. 2) the local environment (noted
Γ). It is used for the first step of typechecking, and looks like a standard environment. 3) the essence
environment (noted Ψ). It is used for the second step of typechecking, and holds the essence of the local
variables. 4) the meta-environment (noted Φ). It is used for unification, and records meta-variables and
their instantiation whenever the unification algorithm has found a solution.

Σ ::= · | Σ,c:ς@σ | Σ,c := M@∆ : ς@σ
Γ ::= · | Γ,x:σ | Γ,x := ∆ : σ
Ψ ::= · |Ψ,x |Ψ,x := M
Φ ::= · |Φ,sort(?x) |Φ,?x := s |Φ,(Γ `?x : σ) |Φ,(Γ `?x := ∆ : σ) |Φ,Ψ `?x |Φ,Ψ `?x := M

Evaluator. The evaluator follows the applicative order strategy, which recursively normalizes all sub-
terms from left to right; in addition to the standard βδηζ -reduction rules, we have rules for projections
pri and injections ini .
Subtyping. It is the one extracted by Coq in [10]. The algorithm has been mechanically proved correct
in Coq by extending the certification of the algorithm for intersection types of Bessai [4], and it represent,
at the moment, the only mechanically certified (by Coq) part.
Unification. The Bull higher-order unification algorithm is inspired by the Reed [13] and Ziliani-Sozeau
[16] papers. The unification algorithm takes as input a meta-environment Φ, a global environment Σ,
a local environment Γ, the two terms to unify ∆1 and ∆2, and either fails or returns the updated meta-
environment Φ, namely Φ;Σ;Γ ` ∆1

?
= ∆2

U Φ.
Refiner. Our typechecker is also a refiner: intuitively, a refiner takes as input an incomplete term, and
possibly an incomplete type, and tries to infer as much information as possible in order to reconstruct
a well-typed term. The Bull refiner is inspired by the work on the Matita ITP [1]. It is defined using
bi-directionality, in the style of Harper-Licata [8]. The bi-directional technique is a mix of typechecking
and type reconstruction, in order to trigger the unification algorithm as soon as possible. Moreover, it
gives more precise error messages than standard type reconstruction. There are five kind of judgments,

Φ1;Σ;Γ ` ∆1
⇑ ∆2 : σ ;Φ2 Φ1;Σ;Γ ` σ1

F σ2 : τ;Φ2

Φ1;Σ;Γ ` ∆1 : σ ⇓ ∆2;Φ2 Φ1;Σ;Ψ ` ∆ E ⇑ M;Φ2 Φ1;Σ;Ψ `M@∆ E ⇓ Φ

Read-Eval-Print-Loop. The REPL reads a command which is given by the parser as a list of atomic
commands. These commands are similar to the vernacular Coq commands and are quite intuitive. Here
is the list of the REPL commands, along with their description:
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Help. show this list of commands

Load "file". for loading a script file

Axiom term : type. define a constant or an axiom

Definition name [: type] := term. define a term

Print name. print the definition of name

Printall. print all the signature

(axioms and definitions)
Compute name. normalize name and print the result

Quit. quit

Future work. The current version of Bull [14] (ver. 1.0, December 2019) is still a work-in-progress:
we plan to implement the following features: i) Inductive types à la Paulin-Mohring [11] (reasonably
feasible); ii) Mixing subtyping and unification, taking inspiration by the work of Dudenhefner, Martens,
and Rehof [7]; iii) Relevant arrow, as defined in [9], it could be useful to add more expressivity to our
system. Relevant implication allows for a natural introduction of subtyping, in that A⊃r B morally means
A 6 B. Relevant implication amounts to a notion of “proof-reuse”; iv) conceiving a Tactic language
should be feasible in the medium term.

Acknowledgements. This project could not be have be done without the many useful discussions with
Ugo de’Liguoro, Daniel Dougherty, Furio Honsell, and Ivan Scagnetto.
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Intersection types are well known not only to guarantee, but also to characterize certain nor-
malization properties through typability. This include head, weak head, and strong normalization,
and induces a compositional methodology for verifying the properties above, given that typing can
be assigned to terms in a syntax-directed way. This is not in contrast with undecidability of the
underlying decision problem: type inference itself remains an undecidabile problem.

The picture above have been generalized from termination to complexity properties [6, 3],
exploiting in a crucial way a non-idempotent form of intersection, in which any type τ is funda-
mentally different from τ ∩ τ . This allows to somehow count the number of copies each subterm
can be subject to, eventually allowing to give a precise bound [1, 2] on the number of reduction
steps necessary to reach the normal form.

Intersection types have recently been generalized to probabilistic lambda-calculi [7, 5] by the
first author with Flavien Breuvart [4], obtaining a characterization of almost sure termination
(AST in the following), namely the condition in which non-termination can possibly happen, but
only with null probability. AST not being recursively enumerable [8], there is no hope to get a type
system whose type derivations can be effectively enumerated and in which typability corresponds
to AST. As a consequence, AST can be checked by providing infinitely many type derivations for
the term at hand, each certifying that it normalizes with probability at least 1− ε, this of course
for arbitrary small ε. Completeness is achieved for both CBN and CBV evaluation, and in two
different flavours, namely by way of oracle intersection types and monadic intersection types. In
both cases, however, intersection is idempotent.

Almost sure termination is however not the only possible notion of termination in a probabilistic
setting. In particular, it is well possible that a probabilistic process terminates with probability
1, but the expected number of steps to termination is infinite. As an example, the symmetric
random walk on the natural numbers is well-known to be AST, but the journey from 1 to 0 takes,
on average, infinite times. Requiring the latter value to be finite corresponds to the so-called
positive almost sure termination constraint (PAST in the following), a more restrictive criterion
which however is itself not recursively enumerable.

In this talk, we show that injecting non-idempotency in monadic intersection types allows us to
characterize both AST and PAST within the same intersection type system, this way matching the
recursion-theoretic nature of the two notions above. This is done in presence of CBN evaluation,
and requires not only dropping idempotency, but also the use of scaling.
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Intersection types have been introduced originally for the λ -calculus to increase the set of terms
having meaningful types [1], Part III. The typability power of intersection types is essentially due to the
possibility of giving intersection types to the arguments of functions. In a programming language this
corresponds to allowing the types of input parameters and output results to be intersection types. In an
object-oriented language also the types of fields should be intersection types. In [3], Büchi and Weck
proposed to extend Java 1 by allowing intersection types (called compound types) as parameter types,
variable types, return types of methods, and cast operators. They justify intersection types by means of
an interesting example. (Here we use a simplified version of this example.) Java 8 has intersection types,
but their use in writing code is limited to type casts and bounds of generic type variables. Java 8 allows
a generic type variable bound by an intersection type as a parameter type, a variable type and a return
type of a method. In some cases intersection types can be simulated by the use of generics bounded by
intersections. Consider the following example where the type of field intField in line 10 and the return
type of method sum in line 15 are meant to be intersection types:

1 i n t e r f a c e I I n t { i n t opI ( i n t x , i n t y ) ; }
2
3 i n t e r f a c e IDouble { do u b l e opD ( do ub l e x , do ub l e y ) ; }
4
5 c l a s s I n t I D o u b l e implemen t s I I n t , IDouble {
6 p u b l i c do u b l e opD ( do u b l e x , do ub l e y ) { r e t u r n x + y ; }
7 p u b l i c i n t opI ( i n t x , i n t y ) { r e t u r n x + y ; }
8 }
9 c l a s s U s e I n t e r s e c t i o n <T1 e x t e n d s I I n t&IDouble > {

10 T1 i n t F i e l d ;
11 U s e I n t e r s e c t i o n ( T1 i n t F i e l d ) {
12 s u p e r ( ) ;
13 t h i s . i n t F i e l d = i n t F i e l d ;
14 }
15 <T2 e x t e n d s I I n t&IDouble > T2 sum ( ) {
16 r e t u r n ( T2 ) new U s e I n t e r s e c t i o n ( new I n t I D o u b l e ( ) ) . i n t F i e l d ;
17 }
18 }

In Java 8 λ -expressions are poly expressions, i.e. they can have various types according to the context
requirements. More specifically, the contexts must prescribe target types for λ -expressions: indeed, Java
code does not compile when λ -expressions come without target types. A target type can be either a
functional interface (i.e., an interface with a single abstract method) or an intersection of interfaces that
induces a functional interface. Notably the abstract method header must have a type derivable for the
λ -expression. The target type cannot be a generic type variable. This ban is needed since the variable
could be instantiated by a class or by an interface with an abstract method header which cannot be used
to type the λ -expression. As a result only the λ -expressions which are casted to intersection types in the
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user code have target types which are intersection types. If we now define the class UseIntersection with
the method sum as follows

<T2 e x t e n d s I I n t&IDouble > T2 sum ( ) {
r e t u r n ( T2 ) new U s e I n t e r s e c t i o n ( ( x , y )−>x+y ) . i n t F i e l d ;

the code is well typed in Java. So the λ -expression (x,y)−>x+y implements both interfaces. However,
this λ -expression cannot be returned by method sum, since λ -expressions in Java may be typed only by
functional interfaces, i.e., intersections of interfaces with a single abstract method. In our example IInt

&IDouble specifies two abstract methods. However, even if we remove the method opD from the interface
IDouble, obtaining the functional type IInt &IDouble, the generic variable T2 is still not a functional type.
This is needed for safety, since extending IInt &IDouble more methods could be added and/or a class could
be obtained. Line 12 of the following code produces a compilation error in Java, since even though
(x, y) −> x + y has type IInt &IDouble, still the interface T2 is not a functional interface, so cannot be the
target type of a λ -expression.
1 i n t e r f a c e I I n t { i n t opI ( i n t x , i n t y ) ; }
2
3 i n t e r f a c e IDouble { }
4
5 c l a s s U s e I n t e r s e c t i o n <T1 e x t e n d s I I n t & IDouble > {
6 T1 i n t F i e l d ;
7 U s e I n t e r s e c t i o n ( T1 i n t F i e l d ) {
8 s u p e r ( ) ;
9 t h i s . i n t F i e l d = i n t F i e l d ;

10 }
11 <T2 e x t e n d s I I n t & IDouble > T2 q ( ) {
12 r e t u r n ( T2 ) ( x , y ) −> x + y ; / / ERROR
13 }
14 }
In [4] we proposed to go back to [3] and allow intersection types as parameter types of constructors and
methods and as return types of methods and allow target type for a λ -expression to have an arbitrary num-
ber of abstract methods, proviso that all the method headers have types derivable for the λ -expression.
This proposal is formalised trough the calculus FJP&λ (Featherweight Java with polymorphic intersec-
tion types and λ -expressions). As expected FJP&λ enjoys subject reduction and progress.

In the current paper we show the meaningfulness of FJP&λ , by providing examples in which the use
of intersection enhance the expressive power of the language. For instance, the Interface Segregation
Principle prescribes to keep Interfaces as tiny as possible, in order to avoid interface pollution. On the
other hand, in other cases we need to deal with objects implementing several Interfaces. The introduction
of intersection types in Java has been a crucial step in this direction, allowing to segregate different meth-
ods in separated interfaces, while combining interfaces in the type of objects when needed. However, we
cannot explicitly assign an intersection type to a variable. In such cases, a partial solution could be to
use the var-mechanism, the new feature introduced in Java 10 for the definition of variables whose type
is omitted and is inferred by the local type inference. Unfortunately, this solution does not work in the
crucial case of λ -expressions, that need to have explicit target types. By discussing significant use cases,
we will show that Java restrictions on intersection types result in critical drawbacks for programming
with functions and, more in general, for a clean code design. Finally, concerning the feasibility of our
proposal, we will discuss the compiling of FJP&λ typed programs into FJ&λ . FJ&λ is a core calculus
that extends Featherweight Java with interfaces, supporting multiple inheritance in a restricted form, λ -
expressions, and intersection types, see [2]. FJ&λ was introduced to give a faithful formalisation of the
static and dynamic semantics of Java 8.
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