
EUTYPES-TYPES 2020 - Abstracts

Ugo de’ Liguoro and Stefano Berardi (eds.)

Turin, March 2020

1

Foreword

This volume contains the abstracts of the talks accepted for presentation at the
26th International Conference on Types for Proofs and Programs, EUTYPES-
TYPES 2020, in Turin. But unfortunately, the circumstances have been not
favorable; being planned on the dates of 2 - 5 March 2020 in Turin, the workshop
has not been held, because of the sanitary emergency caused by the spreading
of the SARS-CoV-2 virus infection.

As the title itself suggests, the talks illustrate recent research and ongoing
work in the area of type theory, cross cutting the fields of logic, category theory
and computer science. The conference was structured in two parts: the first
part was dedicated to the Cost Action EUTypes ca 15123, that started on 21
March 2016 in Brussels, and it was planned as the final meeting. The second
part was the 26th edition of the TYPES workshop.

The Cost Action EUTypes, led by Herman Geuvers (chair) and Tarmo
Uustalu (vice-chair), has been devoted to type theory and its numerous ap-
plications in computer science; it has been structured in four working groups:

WG1: Theoretical Foundations

WG2: Type-theoretic tools

WG3: Types for programming

WG4: Types for verification

The WG are referred to in the titles of the first eight sections of this collection.

The remaining six sessions correspond to the program of the third and fourth
days of the conference, dealing with topic strictly related to the formers, further
exploring the fields of types and computation theory, of logic and λ-calculi,
proof-theory, category theory and logic. They include, but are not limited to,
the following:

• foundations of type theory and constructive mathematics;

• applications of type theory;

• dependently typed programming;

• industrial uses of type theory technology;

• meta-theoretic studies of type systems;

• proof assistants and proof technology;

• automation in computer-assisted reasoning;

• links between type theory and functional programming;

• formalizing mathematics using type theory.

The abstracts testify how reach is the research about types, both in theoret-
ical and in practical directions.

Ugo de’ Liguoro and Stefano Berardi

Turin, 1 March 2020

2

Contents

1 Homotopy and categories in type theory (WG1) 6
1.1 B. Barras, R. Malak: A Semi-simplicial Model of System F in

Dependent Type Theory Modulo Rewriting 7
1.2 T. Altenkirch, A. Kaposi, C. Sattler, F. Sestini: Constructing a

universe for the setoid model . 10
1.3 U. Buchholtz, E. Rijke: The long exact sequence of homotopy

n-groups . 13
1.4 B. Ahrens, N. Kudasov, P. L. Lumsdaine, V. Voevodsky: Cate-

gorical structures for type theory in univalent foundations, II . . 15
1.5 M. Benini, R. Bonacina: Natural Numbers in Homotopy Type

Theory . 18
1.6 P. Cagne, N. Kraus, M. Bezem: On Symmetries of Spheres in

HoTT-UF . 20

2 Induction and identity in higher types (WG1) 22
2.1 A. Kaposi, Z. Xie: A model of type theory with quotient inductive-

inductive types . 23
2.2 A. Mörtberg, M. Zeuner: A Cubical Approach to the Structure

Identity Principle . 26
2.3 P. Capriotti, C. Sattler: Higher categories of algebras for higher

inductive definitions . 29
2.4 A. Kovács, A. Kaposi: Generalizations of Quotient Inductive-

Inductive Types . 32

3 Type-theoretic systems and tools (WG2) 35
3.1 C. Stolze: A Sound and Complete Algorithm for Union and In-

tersubsection Types in Coq . 36
3.2 N. Veltri, A. Vezzosi: Formalizing π-calculus in Guarded Cubical

Agda . 38
3.3 F. N. Forsberg, C. Xu: Ordinal Notation Systems in Cubical Agda 41
3.4 G. Genestier: Universe Polymorphism Expressed as a Rewriting

System . 44
3.5 R. A. Ometita: Towards a coinductive mechanisation of Scilla in

Agda . 47

4 Proof assistants and technology (WG2) 50
4.1 T. Dalmonte, S. Negri, N. Olivetti, G. L. Pozzato: PRONOM.

A theorem prover and countermodel generator for non-normal
modal logics . 51

4.2 A. Bauer, P G. Haselwarter, A Petković: On equality checking
for general type theories: Implementation in Andromeda 2 54

4.3 J. Esṕı?rito Santo, R. Matthes, L. Pinto: Proof search for full
intuitionistic propositional logic through a coinductive approach
for polarized logic . 57

4.4 G. Fellin, S Negri, P. Schuster: Modal Induction for Elementary
Proofs . 60

3

5 Types for programming languages (WG3) 63
5.1 H. Maclean, Z. Luo: Subtype Universes 64
5.2 L. Ciccone, F. Dagnino, E. Zucca: Flexible Coinduction in Agda 67
5.3 F. Dagnino, V. Bono, E. Zucca, M. Dezani-Ciancaglini: Sound-

ness conditions for big-step semantics 70
5.4 F. N. Forsberg, C. Xu: Ordinal Notation Systems in Cubical Agda 73
5.5 A. Kaposi, A. Kovács, N. Kraus: Shallow Embedding of Type

Theory is Morally Correct . 76
5.6 V. Fernandes, R. Neves, L. Barbosa: A type system for simple

quantum processes . 79

6 Types, proofs and programs (WG3) 82
6.1 E. Miquey, X. Montillet, G. Munch-Maccagnoni: Dependent Type

Theory in Polarised Sequent Calculus 83
6.2 N. Brede, H. Herbelin: On the logical structure of choice and bar

induction principles . 86
6.3 R. Blanco, D. Miller, A. Momigliano: On the Proof Theory of

Property-Based Testing of Coinductive Specifications, or: PBT
to Infinity and beyond . 88

6.4 P. Urzyczyn: Duality in intuitionistic propositional logic 91

7 Formalizing mathematics with types (WG4) 93
7.1 A. Dudenhefner: Mechanized Undecidability Results for Propo-

sitional Calculi . 94
7.2 Y. Forster, D. Kirst, F. Steinberg: Towards Extraction of Conti-

nuity Moduli in Coq . 97
7.3 N. van der Weide: Constructing Higher Inductive Types as Groupoid

Quotients . 100
7.4 J. Cockx, N. Tabareau, T. Winterhalter: Modular Confluence for

Rewrite Rules in MetaCoq . 103

8 Types and verification (WG4) 106
8.1 N. Köpp, T. Powell, C. Xu: Program Analysis via Monadic

Translations . 107
8.2 N. Zyuzin, A. Nanevski: Contextual Modal Types for Algebraic

Effects and Handlers . 110
8.3 L. Blaauwbroe: Project Proposal: Relieving User Effort for the

Auto Tactic in Coq with Machine Learning 113
8.4 A. Abel: Type-preserving compilation via dependently typed

syntax . 116

9 Types and computation 118
9.1 B. Accattoli, A. Condoluci, G. Guerrieri, M. Leberle, C. Sacerdoti

Coen: Multi Types for Strong Call-by-Value 119
9.2 J. Esṕırito Santo, L. Pinto, T. Uustalu: Calling paradigms and

the box calculus . 123
9.3 A. Bauer, P. G. Haselwarter: Finitary general type theories in

computational form . 125

4

10 Types, logic and lambda calculi 128
10.1 B. van den Heuvel, J.A. Pérez: Comparing Session Type Inter-

pretations of Linear Logic . 129
10.2 M. Bak: On self-interpreters for the λ�-calculus and other modal

λ-calculi . 133
10.3 D. Gratzer, G. A. Kavvos, A. Nuyts, L. Birkedal: Multimodal

Dependent Type Theory . 136
10.4 G. Bellin, L. Tranchini: A distributed term assignment for dual-

intuitionistic logic . 139

11 Logic, category and types 142
11.1 N. Kraus, J. von Raumer: An Induction Principle for Cycles . . 143
11.2 R. Bocquet, A. Kaposi, C. Sattler: Metatheoretic proofs inter-

nally to presheaf categories . 146
11.3 J. Emmenegger, F. Pasquali, G. Rosolini: Elementary doctrines

as coalgebras . 149
11.4 I. Shillito, R. Cloustoni: Bi-Intuitionistic Types via Alternating

Contexts . 152

12 Foundations of logic and type theory 155
12.1 H. Geuvers, T. Hurkens: Proof terms for generalized classical

natural deduction . 156
12.2 A. Setzer: Did Palmgren Solve a Revised Hilbert?s Program? . . 159
12.3 S. Soloviev: Axiom C and Genericity for System F 162
12.4 S. Ghilezan, S Kasterović: Towards Completeness of Full Simply

Typed Lambda Calculus . 164
12.5 F. Honsell, M. Lenisa, M. Miculan, I. Scagnetto: Extended Ab-

stract: Principal types are game strategies 167
12.6 P. Di Gianantonio, M. Lenisa: Principal Types as Lambda Nets . 170

13 Finitary representation of ideal and infinite objects 173
13.1 V. Capretta: Coinductive Types from Hangers-and-Pegs Streams 174
13.2 J. Paulus, D. Nantes-Sobrinho, J. A. Pérez: Non-deterministic

Functions as Non-deterministic Processes 177
13.3 H. Basold, N. Veltri: A Type-Theoretic Potpourri. Towards Final

Coalgebras of Accessible Functors 180
13.4 P. Schuster, D. Wessel: Resolving finite indeterminacy. A defini-

tive constructive universal prime ideal theorem 183

14 Terms, rewriting and types 187
14.1 G. Férey, J-P. Jouannaud: Confluence in Higher-Order Theories 188
14.2 F. Blanqui: Type safety of rewriting rules in dependent types . . 191

5

1 Homotopy and categories in type theory (WG1)

6

A Semi-simplicial Model of System F in Dependent Type

Theory Modulo Rewriting

Bruno Barras and Rehan Malak ∗

Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria
Laboratoire Spécification et Vérification, 94235, Cachan, France

1 Introduction

The consistency of the Homotopical Type Theory [Pro13] and the Cubical Type Theories is
currently based on presheaf models on simplicial or cubical categories: the initial Kan-simplicial
set model of HoTT [KLV12] and the various cubical flavors inspired by [CCHM18]

` T : Type ; [Cop,Set] where C = ∆ or � or · · ·

Intensional Type Theories are just good enough to encode those models as long as we restrict
to a fixed level of truncation [BCH15]. However, the formalization of semi-simplicial sets has
shown to be notoriously difficult in the general case [Her15] because the definition requires
coherence conditions that could not have been solved definitionally so far.

The current solution is to work in a two-level type theory [ACKS19, ACK16, BT12, PL15],
where an external (or logical) equality is used to express those conditions. There also exists
variants [Voe12] where a reflection rule allows to use definitional equality for the coherence
conditions. The drawback is that in both cases coherence conditions are expressed with an
equality which is not decidable, and may thus require extra work from the user.

We investigate the power of λΠ/R, a dependently typed λ-calculus extended with user-
defined rewrite rules and implemented by the Dedukti proof-assistant [ABC+16, Ded20], to
formalize the category of semi-simplicial sets. This is then turned into a model of system
F. Rewrite rules allows to express the coherence conditions in the definitional equality, while
remaining in a decidable fragment.

The Agda proof-assistant has since developed an experimental feature to extend the defini-
tion equality with rewrite rules [Coc19].

2 Semi-simplicial model : induction on the dimension

First we define the base category C. In our work, the type of objects is set to the ordered
natural numbers (nat), representing the dimension. F is the type of morphisms of C.

We use a rewriting rule for the associativity of composition in C. The & prefix before a
variable means that it is a pattern of a rewriting rule associated to comp.

// Morphisms and (associative) composition

symbol F (i : nat) (j : nat) : TYPE

symbol comp (i j k : nat) : F i j ⇒ F j k ⇒ F i k //!\ order

rule comp &i &k &l (comp &i &j &k &f &g) &h →
comp &i &j &l &f (comp &j &k &l &g &h)

∗This research has benefited of the financial support from the French Labex Digicosme.

A Semi-simplicial Model of System F in Dependent Type Theory Modulo Rewriting Barras and Malak

This is only a partial definition of C, showing the generality of the construction to many presheaf
models. The semi-simplicial set model is obtained by setting F i j to be the injective order-
preserving maps from [0..i] to [0..j]. They serve as an index for the i-simplices included in a
j-simplex.

Semi-simplicial sets are represented by a type of codes ssset. The sets associated to each
dimension SX are parametrized by skeletons as in [Her15]. They have to be defined each time a
new code is introduced. The definition requires auxiliary definitions listed below:

// A Type of ‘‘codes ’’ for the semi-simplicial sets

symbol ssset : TYPE

// Skeleton: simplices of dim <n included in the i-simplex

symbol SB (L : ssset) (n : nat) (i : nat) : TYPE

// Type of n-simplices based on skeleton b, to be defined for each code

symbol SX (L : ssset) (n : nat) (b : SB L n n) : TYPE

// Effect of the functor on morphisms of C + coherence condition

symbol mapSB L n i j : F i j ⇒ SB L n j ⇒ SB L n i

rule mapSB &L &n &i &j &f (mapSB &L &n &j &k &g &b) →
mapSB &L &n &i &k (comp &i &j &k &f &g) &b

We have assumed that some data exists and satisfies some coherence condition at all di-
mensions. Now we can define SB and mapSB1 by induction on n, and check (using the assert

command) that it satisfies the above coherence condition. Defining directly constants SB and
mapSB would make this check trivial, so we introduce new symbols for the intended definition:

// SBS(L,n) is the intended definition for SB(L,n+1)

symbol SBS (L : ssset) (n : nat) (i : nat) : TYPE

symbol mapSBS (L : ssset) (n i j : nat) // idem for mapSB

(f : F i j) (b : SBS L n j) : SBS L n i

// Checking the coherence of the intended def above

assert { ... } mapSBS L n i j f (mapSBS L n j k g b) ≡
mapSBS L n i k (comp i j k f g) b

Once this has been checked we can make the definition effective:

rule SB &L (nS &n) &i → SBS &L &n &i

rule mapSB &L (nS &n) &i &j &f &b → mapSBS &L &n &i &j &f &b

Following the above definition scheme by induction on the dimension, we have defined (1) the
category of semi-simplicial sets equipped with (2) cartesian product (×) and exponential (→)
and (3) a generalized impredicative cartesian product ∀i:IA(i) 2 Using the above definitions,
we could build a model of the polymorphic λ-calculus system F 3 , where types are interpreted
as semi-simplicial sets.

We are currently formalizing dependent type theories with Categories with Families [Dyb95].
As the models are changing rapidly, one would like to remain as much as possible agnostic to
one particular choice of category and fibration morphisms. In all cases, one has to generalize
and complete our code with : families of objects, degeneracy maps, Kan condition. We hope
that this will reveal the full potential of user-defined rewriting rules. On the meta-theory level,
one has also to check that they form a normalizing, confluent rewriting system. For this, we
count on the interoperability between Dedukti and third-party specialized tools.4

1The actual definition of the base and step cases of the definition are omitted due to space constraints.
2Since λΠ/R is a weak predicative theory, we need to assume the existence of an impredicative universe.
3we cannot prove that this model is parametric although it might be if the impredicative universe happens

to be parametric
4cf the --confluence and --termination options of Dedukti

2

A Semi-simplicial Model of System F in Dependent Type Theory Modulo Rewriting Barras and Malak

References

[ABC+16] Ali Assaf, Guillaume Burel, Raphal Cauderlier, David Delahaye, Gilles Dowek, Catherine
Dubois, Frédéric Gilbert, Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Ex-
pressing theories in the λΠ-calculus modulo theory and in the Dedukti system. In TYPES:
Types for Proofs and Programs, Novi SAd, Serbia, May 2016.

[ACK16] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending homotopy type theory
with strict equality. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual
Conference on Computer Science Logic (CSL 2016), volume 62 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21:1–21:17, Dagstuhl, Germany, 2016. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

[ACKS19] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type
theory and applications. 2019. arXiv:1705.03307.

[BCH15] Bruno Barras, Thierry Coquand, and Simon Huber. A generalization of the Takeuti–Gandy
interpretation. Mathematical Structures in Computer Science, 25(5):1071–1099, 2015.

[BT12] Simon Boulier and Nicolas Tabareau. Model structure on the universe in a two level type
theory. https://hal.archives-ouvertes.fr/hal-01579822/file/main.pdf, 2012.

[CCHM18] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:
A Constructive Interpretation of the Univalence Axiom. In Tarmo Uustalu, editor, 21st
International Conference on Types for Proofs and Programs (TYPES 2015), volume 69
of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–5:34, Dagstuhl,
Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Coc19] Jesper Cockx. Type theory unchained: Extending type theory with user-defined rewrite
rules. https://jesper.sikanda.be/files/type-theory-unchained-draft-2019-11-12.

pdf, November 2019. Submitted to the TYPES 2019 post-proceedings (PDF).

[Ded20] Deducteam. Lambdapi, proof assistant based on the λΠ-calculus modulo rewriting. https:
//github.com/Deducteam/lambdapi, 2020.

[Dyb95] Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types
for Proofs and Programs, International Workshop TYPES’95, Torino, Italy, June 5-8,
1995, Selected Papers, volume 1158 of Lecture Notes in Computer Science, pages 120–134.
Springer, 1995.

[Her15] Hugo Herbelin. A dependently-typed construction of semi-simplicial types. Mathematical
Structures in Computer Science, 25(Special issue 05):16, June 2015.

[KLV12] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The simplicial model
of univalent foundations. 2012. arXiv:1211.2851.

[PL15] Fedor Part and Zhaohui Luo. Semi-simplicial types in logic-enriched homotopy type theory.
2015. arXiv:1506.04998.

[Pro13] The Univalent Foundations Program. Homotopy type theory: Univalent foundations of
mathematics. Technical report, Institute for Advanced Study, Institute for Advanced Study,
2013.

[Voe12] Vladimir Voevodsky. Homotopy type systems. https://ncatlab.org/

homotopytypetheory/show/Homotopy+Type+System, 2012.

3

Constructing a universe for the setoid model
Thorsten Altenkirch1∗, Ambrus Kaposi2, Christian Sattler1†, and Filippo Sestini1

1 School of Computer Science, University of Nottingham, UK
{psztxa,pszcs1,psxfs5}@nottingham.ac.uk

2 Eötvös Loránd University, Budapest, Hungary
akaposi@inf.elte.hu

The setoid interpretation gives rise to a model of a type theory with functional and propo-
sitional extensionality. It is thus a way to explain extensionality in a type-theoretic and com-
putationally adequate way [Alt99]. The setoid model has been recently adapted into Setoid
Type Theory (SeTT), which is justified by a syntactic translation into a very basic target
theory [ABKT19]. This translation relies on the existence in the target theory of a universe
of definitionally proof-irrelevant propositions Prop, as recently implemented in Coq and Agda
[GCST19]. The setoid interpretation models a universe of propositions where equality of propo-
sitions is logical equivalence, thus providing a very basic instance of univalence. However, we
also would like to be able to equip SeTT with a universe of setoids. This universe must in turn
be a setoid, hence in particular it cannot be univalent, but rather its equivalence relation must
reflect simple equality of codes.

To provide such a universe we need to define a setoid U : Setoid and a family of setoids
El : U → Setoid, with codes for basic type formers like Π-types and booleans. This can be
obtained as an inductive-recursive type.

data U : Set1
_ ∼U _ : U → U → Prop1
El : U → Set
_ ` _ ∼El _ : {a a′ : U} → a ∼U a

′ → El a→ El a′ → Prop

However, we don’t want to assume inductive-recursive types in the basic type theory which is
the target of the setoid translation. We know that we can translate basic instances of induction-
recursion into inductive families using the equivalence of I-indexed families of sets and sets over
I, i.e. [I,Seti] ' Seti/I for I : Seti. For example, the inductive-recursive definition of a universe
U : Set1 and El : U→ Set with Π-types and Booleans is1:

data U : Set1
bool : U
pi : (A : U)→ (El A→ U)→ U

El bool = 2

El (pi A B) = (a : El A)→ El (B a)

We can model this as an inductive type in-U that carves out all types in Set that are in the

∗Supported by USAF grant FA9550-16-1-0029.
†Supported by USAF grant FA9550-16-1-0029.
1In Agda, this definition would also go through if U were in Set, but this seems to be a non-conservative

extension.

Constructing a universe for the setoid model Altenkirch, Kaposi, Sattler, Sestini

image of El:

data in-U : Set→ Set1
inBool : in-U 2

inPi : {A : Set}{B : A→ Set}
→ in-U A→ ((a : A)→ in-U (B a))→ in-U ((a : A)→ (B a))

Using this U and El can be given as follows:

U = Σ(A : Set) (in-U A)

El = proj1

Note that this construction gives rise to a universe in Set1, rather than Set, thus the meta-
theory must contain at least one universe. Our result is that a modified form of this translation
also works for the more complex inductive-recursive type we need to model the universe of
setoids. In particular, in addition to in-U for defining U as before, we also introduce a family
in-U∼ of binary relations between types in the universe, from which we then define _ ∼U _.
However, we now need an inductive-inductive type in the target theory:

data in-U : Set→ Set1
data in-U∼ : {A A′ : Set} → in-U A→ in-U A′ → (A→ A′ → Prop)→ Set1
U : Set1
El : U → Set
_ ∼U _ : U → U → Prop1
_ ` _ ∼El _ : {a a′ : U} → a ∼U a′ → El a→ El a′ → Prop

U = Σ (X : Set) (in-U X)

El = proj1
(X, p) ∼U (X ′, p′) = ‖ Σ (R : X → X ′ → Prop) (in-U∼ p p′ R) ‖

where ‖ A ‖ : Prop denotes the propositional truncation of A : Set. Intuition would suggest
to define _ ` _ ∼El _ by projecting the relation out of the proof of a ∼U a′, in much the same
way as El is defined by projecting out of U. That is, p ` x ∼El y = proj1 p x y. However,
this doesn’t work since the type of p is propositionally truncated, hence it cannot be used to
construct a proof-relevant object. We can work around this by instead defining _ ` _ ∼El _
by induction on the codes a a′ : U , explicitly for each type former, mutually with a proof that
this definition is logically equivalent to what we would obtain if we could project out of the
truncation.

We know that finitary inductive-inductive definitions can be translated into inductive fami-
lies [AKKvR19, AKKvR18, KKA19] but it is not clear whether this construction extends to an
infinitary type like the one above. This is subject of further work. If successful we would be
able to give a translation of the setoid model with a universe into a very basic core type theory.

References
[ABKT19] Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. Setoid type

theory—a syntactic translation. In Graham Hutton, editor, Mathematics of Program Con-
struction, pages 155–196, Cham, 2019. Springer International Publishing.

2

Constructing a universe for the setoid model Altenkirch, Kaposi, Sattler, Sestini

[AKKvR18] Thorsten Altenkirch, Ambrus Kaposi, András Kovács, and Jakob von Raumer. Reducing
inductive-inductive types to indexed inductive types. In José Espírito Santo and Luís
Pinto, editors, 24th International Conference on Types for Proofs and Programs, TYPES
2018. University of Minho, 2018.

[AKKvR19] Thorsten Altenkirch, Ambrus Kaposi, András Kovács, and Jakob von Raumer. Construct-
ing inductive-inductive types via type erasure. In Marc Bezem, editor, 25th International
Conference on Types for Proofs and Programs, TYPES 2019. Centre for Advanced Study
at the Norwegian Academy of Science and Letters, 2019.

[Alt99] Thorsten Altenkirch. Extensional equality in intensional type theory. In Proceedings of the
14th Annual IEEE Symposium on Logic in Computer Science, LICS ’99, page 412, USA,
1999. IEEE Computer Society.

[GCST19] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional Proof-
Irrelevance without K. Proceedings of the ACM on Programming Languages, pages 1–28,
January 2019.

[KKA19] Ambrus Kaposi, András Kovács, and Lafont Ambroise. For induction-induction, induction
is enough. Submitted to TYPES 2019 post-proceedings, 2019.

3

The long exact sequence of homotopy n-groups
Ulrik Buchholtz1 and Egbert Rijke2

1 Technische Universität Darmstadt
buchholtz@mathematik.tu-darmstadt.de

2 University of Ljubljana
egbert.rijke@fmf.uni-lj.si

An n-group G in homotopy type theory (Univalent Foundations Program, 2013) is defined to
be (represented by) a pointed connected n-type BG (cf. Buchholtz, van Doorn, and Rijke, 2018).
The underlying type G of the n-group BG is the loop space ΩBG, which possesses the structure
of an n-group by the operations on paths. We note that the underlying type G of an n-group is
(n− 1)-truncated. The representing type BG of an n-group G is called the classifying type of
the group.

From this point of view, a 1-group is a pointed connected 1-type. Loosely speaking, these
are types that only have an interesting fundamental group, and no non-trivial higher homotopy
groups.1 The underlying type of a 1-group is therefore a set equipped with the usual structure
of a group, so an ordinary group in the traditional sense of the word is a 1-group.

The principal class of examples of n-groups are the fundamental n-groups of pointed types.
We define the fundamental n-group π(n)

1 (X) of a pointed type X to be the n-truncation of the
connected component of X at the base point.

Many n-groups G have further structure because they come with further deloopings of
BG. The higher homotopy n-groups of a pointed type X are examples of such n-groups with
additional symmetries. A k-symmetric n-group G is represented by a pointed (k − 1)-connected
(n+ k − 1)-type BkG, of which the underlying type is the k-fold loop space ΩkBkG. Note that
a 1-symmetric n-group is just an n-group – group theory is about symmetries, after all. The
notion of k-symmetric n-group stabilizes when k ≥ n+ 1 (cf. Buchholtz, van Doorn, and Rijke,
2018, Sect. 6). For example, a 2-symmetric 1-group is an abelian group, and so is a k-symmetric
1-group for any k ≥ 2.

The higher homotopy n-groups, π(n)
k (X), are now defined as the k-symmetric n-groups

represented by
Bkπ

(n)
k (X) :≡ ‖X〈k − 1〉‖n+k−1.

In this definition of π(n)
k (X), the type X〈k − 1〉 is the (k − 1)-connected cover of X, which is

the fiber of the (k − 1)-truncation of X:

X〈k − 1〉 X ‖X‖k−1.

Thus we see that Bkπ
(n)
k (X) fits in the fiber sequence

Bkπ
(n)
k (X) ‖X‖n+k−1 ‖X‖k−1,

and that the underlying type of π(n)
k (X) is equivalent to ‖ΩkX‖n−1.

1Of course, it is not quite as simple if there are noncontractible ∞-connected types around, as can happen if
Whitehead’s principle fails. Recall that homotopy type theory has models in (∞, 1)-toposes, and there are plenty
such where Whitehead’s principle fails.

easychair: Running title head is undefined. easychair: Running author head is undefined.

The definition of the k’th homotopy n-group also makes sense when k = 0. In this case
we just recover the (n − 1)-truncation of X. The observation that Bkπ

(n)
k (X) is the fiber of

‖X‖n+k−1 → ‖X‖k−1 is a generalization of the well-known fiber sequence

K(πk(X), k) ‖X‖k ‖X‖k−1

in which the fiber is the k’th Eilenberg-Mac Lane space of the k-th homotopy group of X (Licata
and Finster, 2014).

The basic observation that we use to obtain the long exact sequence of homotopy n-groups
is the following proposition, in which we establish that the n-truncation operation – although it
is not left exact – preserves k-cartesian squares for any k < n. A square

C B

A X

is called k-cartesian if the gap map C → A×X B is k-connected.

Proposition 1. The n-truncation modality preserves k-cartesian squares for any k < n.

In particular, any pullback square is (n − 1)-cartesian, so the n-truncation of a pullback
square is an (n− 1)-cartesian square. We use this to obtain our main theorem

Theorem 2. For any fiber sequence F ↪→ E � B we obtain a long n-exact sequence

· · · π
(n)
k (F) π

(n)
k (E) π

(n)
k (B) · · · π

(n)
0 (F) π

(n)
0 (E) π

(n)
0 (B)

of homotopy n-groups, where the morphisms are homomorphisms of k-symmetric n-groups
whenever the codomain is a k-symmetric n-group.

1 Acknowledgements
The authors acknowledge the support of the Centre for Advanced Study (CAS) at the Norwegian
Academy of Science and Letters in Oslo, Norway, which funded and hosted the research project
Homotopy Type Theory and Univalent Foundations during the academic year 2018/19.

References
Buchholtz, Ulrik, Floris van Doorn, and Egbert Rijke (2018). “Higher Groups in Homotopy Type

Theory”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science. LICS ’18. Oxford, United Kingdom: ACM, pp. 205–214. doi: 10.1145/3209108.
3209150.

Licata, Daniel R. and Eric Finster (2014). “Eilenberg-MacLane spaces in homotopy type theory”.
In: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS). ACM, New York, Article No. 66, 10.

Univalent Foundations Program (2013). Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: http://homotopytypetheory.org/book/.

2

Categorical structures for type theory in univalent
foundations, II

Benedikt Ahrens1, Nikolai Kudasov2, Peter LeFanu Lumsdaine3, and Vladimir
Voevodsky4

1 University of Birmingham, UK
b.ahrens@cs.bham.ac.uk

2 Innopolis University, Russia
n.kudasov@innopolis.ru

3 Stockholm University, Sweden
p.l.lumsdaine@math.su.se

4 Institute for Advanced Study, Princeton, NJ, USA
vladimir@ias.edu

1 Introduction

Various categorical structures have been introduced for studying type theories. In the present
project, continuing [2], we compare several of these structures, working in univalent foundations.

Specifically, we compare categories with families, relative universes, and several variants of
these, and investigate how they interact with univalence/saturation and the Rezk completion.

More generally, we explore the differences and novelties of studying algebraic structures in
univalent foundations, compared to in classical foundations.

All our results have been formalised in Coq, over the UniMath library; specifically, in the
tagged version 2020-AKLV-TYPES-abstract of the UniMath/TypeTheory repository.

2 Comparing algebraic structures in the univalent setting

To meaningfully compare different kinds of structures in a classical setting, one must organise
them into categories, and study functors between these categories. Equivalence of categories,
for instance, gives a good notion of equivalence between two kinds of structures.

But the category structure is extra infrastructure that must be defined by hand. Off the
shelf, the structures form just classes; and functions between these classes tell us little. Bijection
between classes of structures, for instance, is not particularly meaningful or useful: it neither
implies nor is implied by equivalence of the corresponding categories.

In the univalent setting, structures of some kind automatically form a type, which (thanks
to its non-trivial equality types) carries much more information than the classical class of such
structures. Typically, the type of widgets will correspond to the groupoid core of the category
of widgets. (Precisely, this is univalence/saturation of the category of widgets.)

Equivalences of types of structures, or other properties of functions between these types,
thus already give meaningful comparisons between the different kinds of structure.

In [2], we compared several different notions of structure at the level of types, giving functions
between the types of such structures, and showing which of these functions are equivalences,
embeddings, or surjections. In the present work, we raise these comparisons to the category
level: we define (univalent) categories of these structures, and discuss how properties of functors
between them correspond to the properties of the underlying functions.

Categorical structures for type theory II Ahrens, Kudasov, Lumsdaine and Voevodsky

3 Categorical structures for type theories
We mainly consider four types of structure: categories with families, representable maps of
presheaves, relative universes, and weak relative universes.

A category with families, or CwF (Dybjer [4], as reformulated by Fiore [5] and Awodey [3])
consists of a category, whose objects are thought of as contexts, along with presheaves of types
and terms connected by a map, and a context extension operation, characterised by a universal
property. Representable maps of presheaves weaken this by just asserting existence of objects
with the desired universal property, rather than an operation providing them.

Relative universes were introduced in [2]. They abstract away the role that presheaves
play in the definition of CwF’s: for a functor J : C → D, a J-relative universe is a map
in D together with an operation providing certain J-pullbacks. (For the Yoneda embedding
yC : C → PreShv(C), a yC-relative universe is precisely a CwF structure on C.) A weak J-relative
universe is the same, but with just existence of suitable J-pullbacks, not a given operation.

4 Univalent categories and the Rezk-completion
A notable feature of category theory in univalent foundations (introduced by Ahrens, Kapulkin,
and Shulman [1]) is that many categories of interest are univalent (also called saturated):
equality of their objects corresponds precisely to isomorphism. Classically, this can only hold in
degenerate cases; but in the univalent setting, it holds for most naturally constructed categories.

Working in univalent categories has various payoffs: since “isomorphism is equality”, for
instance, objects specified by universal properties become literally unique, and so existence
conditions often imply (unique) existence of operations picking witnesses.

If a category C is not univalent, this can be rectified by the Rezk-completion construction,
which performs a homotopy-quotient on the objects, replacing their original equality with the
isomorphisms of C, to give a new category RC(C), univalent and (weakly) equivalent to C.

5 Summary
Our results are summarised by the following diagram of categories and functors:

SplTy(C) oo ' // Cwf(C) oo ' //

ff
��

RelU(yC)
ff //

ff
��

RelU(yRC(C))
OO

'
��

oo ' // Cwf(RC(C))
OO

'
��

Rep(C) oo ' // RelWkU(yC) oo
' // RelWkU(yRC(C)) oo

' // Rep(RC(C))

Here, SplTy(C) is the category of split type-category structures on a base category C; Cwf(C) the
category of CwF structures on C; RelU(F) (resp. RelWkU(J)) the category of (weak) J-relative
universes, for a functor J ; and Rep(C) the category of representable maps of presheaves on C.

Acknowledgments
The work reported here was planned and begun in 2017 by Ahrens, Lumsdaine, and Voevod-
sky, as a sequel to [2]. Sadly, Voevodsky died unexpectedly in August 2017; the project was
resumed in 2019 in collaboration with Kudasov. The remaining authors are grateful to Daniel
R. Grayson, Vladimir’s academic executor, for his advice and support in preparing this work.

2

Categorical structures for type theory II Ahrens, Kudasov, Lumsdaine and Voevodsky

References
[1] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk

completion. Mathematical Structures in Computer Science, 25:1010–1039, 2015.
[2] Benedikt Ahrens, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. Categorical structures for

type theory in univalent foundations. Logical Methods in Computer Science, 14(3), 2018.
[3] Steve Awodey. Natural models of homotopy type theory. Mathematical Structures in Computer

Science, pages 1–46, 2016.
[4] Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types for Proofs

and Programs, International Workshop TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers,
volume 1158 of Lecture Notes in Computer Science, pages 120–134. Springer, 1995.

[5] Marcelo Fiore. Discrete generalised polynomial functors, 2012. Slides from talk given at ICALP
2012, http://www.cl.cam.ac.uk/~mpf23/talks/ICALP2012.pdf.

3

Natural Numbers in Homotopy Type Theory

Marco Benini and Roberta Bonacina

Dipartimento di Scienza e Alta Tecnologia,
Università degli Studi dell’Insubria, Italy

marco.benini@uninsubria.it r.bonacina1@uninsubria.it

1 Introduction

The type N of natural numbers is an integral part of intensional Martin-Löf’s type theory [2, 3].
Quoting Section 1.9 of [5],

The rules we have introduced so far do not allow us to construct any infinite types.
The simplest infinite type we can think of (and one which is of course also extremely
useful) is the type N : Ui of natural numbers.

This assertion is certainly true in the book, as it is introducing type theory from scratch, and
historically well founded, since the problem of having an infinite object comes from set theory,
and it has been solved defining natural numbers (in fact, the ω ordinal) as a primitive entity.
However, it can and should be challenged in homotopy type theory where spaces, paths, and
homotopies are the fundamental notions. This is exactly the purpose of this contribution: to
show that, from a purely foundational point of view, the type N can be derived from the 1-
sphere, which is a more natural primitive type within the homotopy framework. In [4] the same
problem has been addressed and solved by a convoluted approach. In the present contribution,
a conceptually simpler solution is provided.

It is worth remarking that this is not the only way to encode natural numbers from another
canonical type; indeed it can be done with W-types, as illustrated in Section 5.5 of [5].

2 Integers and the 1-sphere

The higher inductive type S1 (Section 6.1 in [5]) is generated by a point base : S1 and a path
loop :base =S1 base. The induction principle derives from P :S1 → U , b :P (base), and ` :b =P

loop b
that there is f : Πx:S1P (x) such that f(base) ≡ b and f(loop) ≡ `. In Section 8.1 of [5], and
originally in [1], it has been shown that Ω(S1, reflbase), the loop space of the 1-sphere is equal to
the type of integer numbers. We make the bold move to define Z :≡ base =S1 base, that is, Z
is identified with the loop space Ω(S1).

Calling 0 :≡ reflbase, 1 :≡ loop, −1 :≡ loop−1, + path concatenation, the result shows that
each path in Z is equal to one of the canonical forms reflbase, loopn, and loop−n, the finite (n
times) concatenation of loop and loop−1 with itself. Then, there exists eval : Z → Z such that
eval(x) = x and eval(x) is a canonical form: in fact, eval is the quasi-inverse of the identity in
the equivalence Ω(S1) ' Ω(S1). The existence of eval is a sort of local normalisation theorem,
which shows that each path in S1 can be reduced to a canonical one. Then, after [1], it is easy
to derive the usual introduction, elimination, and computation rules for the integer numbers
from the rules of S1. However, notice how the computation rules use the propositional equality
instead of the judgemental one, as they are derived from a higher inductive type: in fact, Z is
a higher inductive type in this setting.

Natural Numbers in Homotopy Type Theory Benini and Bonacina

Moreover, it suffices to define the usual functions (addition, multiplication, etc.) on the
canonical loops to extend them to all terms of type Z. Their definition is the usual one as the
recursion principle of Z holds.

3 Naturals from integers

Then, a neat way to characterise naturals from integers is to define the absolute value function:
the obvious map abs defined by 0 7→ 0, 1 7→ 1, −1 7→ 1 does not extend to + for a generic
term t : Z, because 1 +−2 7→ 3 by a direct application of the map, while 1 +−2 7→ 1 noticing
that 1 + −2 =S1 −1. However, abs can be easily defined on canonical loops: it maps 0 7→ 0,
loopn 7→ loopn, and loop−n 7→ loopn. Extending abs to Z yields | | :Z→ Z, the sought absolute
value function: the extended function is, in fact, just abs ◦ eval.

Then, natural numbers can be defined as the subtype of Z inhabited by the fix points of | |,
that is N :≡ Σx:Z x =Z |x|. Since 0 : N, and if n : N then succ(n) : N, the N-introduction rules
are justified. The induction principle on naturals is an immediate instance of the Z-elimination
rule, noticing how the pred premise becomes trivial on canonical loops (there are no loops of
the form loop−n in N). Finally, the computation rules for N are immediately inherited from
those of Z, but they are expressed using propositional equality. In other words, N as defined
here, is a higher inductive type.

Clearly, addition and multiplication are inherited from Z because of the properties of the
absolute vale, thus the usual axioms of Peano arithmetic can be derived.

The interest of this construction is that from a purely foundational point of view, it shows
that there is no need to define N as a standalone type since it can be derived from S1 (but we have
to give up judgemental equality in favour of propositional equality). In the perspective of the
homotopy interpretation, we see how integers and naturals are derived entities from a natural
homotopy space, the 1-sphere. Finally, the existence of eval strictly relates this contribution
with the interpretation of homotopy type theory as an abstract programming language, as it
allows to map arithmetical expressions to their value.

References

[1] D.R. Licata and M. Shulman. Calculating the fundamental group of the circle in homotopy type
theory. In 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 223–232,
June 2013.

[2] Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H.E. Rose and J.C. Shep-
herdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic and the Foundations of
Mathematics, pages 73–118. Elsevier, 1975.

[3] Per Martin-Löf. Intuitionistic type theory. Notes by Giovanni Sambin of a series of lectures given
in Padua, June 1980. Bibliopolis, Napoli, 1984.

[4] Robert Rose. Constructing N by S1 induction. Talk at Homotopy Type Theory, 2019.

[5] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.

2

On Symmetries of Spheres in HoTT-UF

Pierre Cagne∗ Nicolai Kraus† Marc Bezem∗

The goal of this talk is to give insights in the symmetries of the n-sphere in synthetic
homotopy theory, i.e. the type Sn = Sn.

We work in intuitionistic Martin-Löf’s type theory with Σ-, Π- and Id-types and with a
cumulative hierarchy of universes, simply written U, for which Voevodsky’s univalence axiom
hold. A good reference for our setting is the HoTT Book [Uni13], to which we will refer frequently.
We specifically use the following higher inductive types (HITs): the propositional truncation
‖A‖ of an arbitrary type A ([Uni13, Ch. 3.7]); the set truncation ‖A‖0 of an arbitrary type A
([Uni13, Ch. 6.9]); the circle S1 ([Uni13, Ch. 6.4]); the suspension ΣA of an arbitrary type A
([Uni13, Ch. 6.5]).

We give some more details of the circle and the suspension, as they are crucial for our
presentation. The circle is a higher inductive type with one point constructor and one path
constructor:

• : S1, the base point

	 : • =S1 • , the loop

The circle comes with an elimination rule such that functions S1 → A correspond to pairs of an
element a : A and a path ` : a = a for any type A. The first part of the talk will be dedicated to
showing that

(S1 = S1) ' (S1 + S1). (1)

For n ≥ 2, the n-sphere Sn is inductively defined as the suspension Σ(Sn−1). The suspension
ΣA of a type A is a higher inductive type with two point constructors and path constructors
indexed by A:

N : ΣA, the ‘North pole’

S : ΣA, the ‘South pole’

merid : A→ (N =ΣA S), the ‘meridians’

The elimination principle for ΣA gives again a correspondence between the type ΣA→ B and
the type of triplets consisting of bN : B, bS : B and m : A→ bN = bS .

One cannot expect (1) to generalise to higher dimensions. However, (1) implies that S1 = S1

consists of two equivalent connected components. Modulo univalence, one component contains
idS1 and the other −idS1 . The latter is the function S1 → S1 corresponding to the pair • : S1

together with the path 	−1 : • = • . This weaker statement does in fact generalise to higher

∗Universitetet i Bergen
†University of Birmingham

On Symmetries of Spheres in HoTT-UF Pierre Cagne, Nicolai Kraus, Marc Bezem

spheres in the homotopy theory of topological spaces. In the talk, we will elaborate a proof in
HoTT-UF for the case n = 2, along the following lines.

The first step is to define −idΣA for any type A as the function corresponding to the triplet
S : ΣA, N : ΣA and merid()

−1
: (A → S = N). In other words, −idΣA flips the poles and

reverses each meridian. Notice that −idΣA is an equivalence, as it is its own pseudo-inverse.
The function

flipA :≡ ◦ −idΣA : (ΣA→ ΣA)→ (ΣA→ ΣA)

is then an equivalence, hence establishing an equivalence from the connected component at idΣA

to the connected component at −idΣA. Notice that −idΣA is not necessarily distinct from idΣA

(take for example A :≡ 1 for which ΣA is contractible). In particular, it is non-trivial to prove
that −idS2 6= idS2 .

As the sphere S2 is connected, in proving the proposition ‖ϕ = idS2‖ + ‖ϕ = −idS2‖ for
an equivalence ϕ : S2 ' S2, one can as well suppose that ϕ is a pointed map by a path
ϕ0 : N = ϕ(N). It is worth computing the degree of such a ϕ. Recall that the degree d(f, f0) of
a pointed function (f, f0) : S2 →∗ S2 is defined as the integer π̄2(f, f0)(1) where π̄2(f, f0) is the
group morphism π2(f, f0) : π2(S2)→ π2(S2) viewed through the equivalence π2(S2) ' Z.

For example, for each k : Z, the following map δk : S2 →∗ S2 has degree k: first define
ck : S1 → S1 as the map that corresponds to the pair • : S1 together with the path 	k : • = • ;
then define δk as the map corresponding to the tripletN : S2, S : S2 and merid◦ck : S1 → N = S,
obviously pointed by the path reflN : N = δk(N). It is easy to see that δ1 = idS2 and one can
prove that δ−1 = −idS2 also. Proving that δk has indeed degree k is non-trivial, and we shall
exhibit a proof using the Hopf fibration.

Using the functoriality of π2, one gets

d((g, g0) ◦ (f, f0)) = π̄2(g, g0) (π̄2(f, f0)(1)) = π̄2(g, g0)(1)× π̄2(f, f0)(1).

The last identity comes from the fact that π̄2(g, g0) is a group morphism Z→ Z. In other words,
d is a morphism of monoids, and as such, it maps equivalences to invertible elements of Z. Hence,
d(ϕ,ϕ0) = ±1. The last step is to prove that having the same degree means precisely being
in the same connected component of S2 →∗ S2. In order to do so, we shall give an alternate
description of the degree, based on the Hopf fibration, and on the proof that π2(S2) ' Z (cf.
[Uni13, Ch. 8.6]).

This result generalizes to the case n > 2 with the help of the Freudenthal suspension theorem
([Uni13, Ch. 8.6]). If time permits, we will sketch our path to a full proof of the fact that
Sn = Sn has exactly two connected components.

Future works include formalizing this proof in cubical type theory (CTT) and experimenting
with actual computation of the degree of selected symmetries. This is one of the motivations
for this work. Indeed, the univalence axiom is necessary for the definition of the Hopf fibration
and for the Freudenthal suspension theorem (and hence for the definition of the degree), and an
implementation in CTT will display the computational content of univalence at work. Hopefully,
this would be a feasible computational challenge, simpler than the computation of Brunerie’s
number (cf. [Bru16, Corollary 3.4.5]), which is still out of reach of CTT and other systems.

[Bru16] Guillaume Brunerie. On the homotopy groups of spheres in homotopy type theory. PhD
thesis, Université de Nice Sophia Antipolis, June 2016.

[Uni13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

2

2 Induction and identity in higher types (WG1)

22

A model of type theory with

quotient inductive-inductive types ∗

Ambrus Kaposi and Zongpu Xie

Eötvös Loránd University, Budapest, Hungary
akaposi@inf.elte.hu and szumixie@gmail.com

QIITs. Quotient inductive-inductive types (QIITs) are a general class of inductive types that
allow multiple sorts indexed over each other (inductive-inductive [10]) and support equality
constructors (quotient). An example is given in the left column of Figure 1. This QIIT has two
sorts, Con and Ty, five point constructors •, ..., Σ, and an equality constructor eq. It comes
with two elimination principles (one for each sort, we don’t list them here) which enforce that
every function from Con preserves the equality eq. Con–Ty can be extended to the full syntax
of type theory [4]. Other examples of QIITs include the real numbers [11] and the partiality
monad [3]. Kaposi et al. [8] gave a general definition of QIITs and showed that all finitary
QIITs can be constructed from a single QIIT called the universal QIIT. However they did not
show that this universal QIIT exists.

In this talk we show that there is a model of type theory which supports the universal
QIIT, namely the setoid model [1]. The setting of [8] is extensional type theory, hence by the
conservativity result of Hofmann [7] the construction can be transferred to a model of type
theory with function extensionality and uniqueness of identity proofs (UIP). As these hold in
the setoid model, we conclude that all finitary QIITs can be defined in the setoid model.

The contents of this talk were formalised in Agda, we provide links to specific parts below.

Con : Set Cons : Ty •
Ty : Con→ Set Tys : Ty (•� Cons)

• : Con •s : Tm • Cons

– � – : (Γ : Con)→ Ty Γ→ Con �s : Tm (•� Cons � Tys) (Cons [ε])

U : Ty Γ Us : Tm (•� Cons) Tys

El : Ty (Γ � U) Els : Tm (•� Cons) (Tys [ε,�s [id,Us]])

Σ : (A : Ty Γ)→ Ty (Γ �A)→ Ty Γ Σs : Tm (•� Cons � Tys � Tys [ε,�s]) (Tys [wk2])

eq : Γ � Σ A B = Γ �A�B eqs : Tm (•� Cons � Tys � Tys [ε,�s])

(El (Id (Cons [ε]) (�s [wk2,Σs]) (�s [(ε,�s)↑])))

Figure 1: Constructors of the QIIT Con–Ty, a fragment of the well-typed syntax of type theory. Note that
Con, Ty on the left become Cons, Tys on the right and Ty, Tm on the right are those of a model of type theory.

Specification of QIITs in a model. We use categories with families (CwFs [5]) as the
notion of model of type theory. That is, a model is a category given by objects Con, morphisms
Sub, families Ty, Tm, substitution is written –[–], empty context •, context extension �.

∗The first author was supported by the ÚNKP-19-4 New National Excellence Program of the Ministry for
Innovation and Technology and by the Bolyai Fellowship of the Hungarian Academy of Sciences. The second
author was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-
16-2017-00002).

A model of type theory with QIITs Kaposi and Xie

Specifying what it means for a model to support a QIIT is straightforward but tedious. For
the constructors of Con–Ty this is done on the right hand side of Figure 1. Here Ty and Tm
refer to types and terms of the model, not sorts of the QIIT. The elimination principle can be
specified in a similar way. The difficulty of working inside a model is that we have to write
out all arguments explicitly (e.g. Γ for U), we need weakenings (e.g. in the type of Σs) and
CwF-combinators instead of variables names. For modularity and efficiency reasons we don’t
use function space of the model to list parameters of constructors, instead we add them to the
context. E.g. �s is not a function with two arguments, but a term in a context of length two.

The universal QIIT is a syntax for a small type theory describing signatures of QIITs. It is
(roughly) an extension of our Con–Ty example. We specified the constructors and elimination
principles of the universal QIIT. These specifications import the setoid model, but they also
work with the standard (set) model or any other strict model. Importing the standard model
and normalising the types helps to make sure that the internal specification (right hand side of
Figure 1) corresponds to the external one (left hand side of the figure).

The setoid model. In the setoid model [1], an element of Con is a setoid, that is, a set with
a (Prop-valued) equivalence relation. The idea is that each type comes with its own identity
type encoded in this relation. For example, the relation for function space says that the two
functions are extensionally equal. This way the setoid model supports function extensionality,
propositional extensionality and quotients. We formalised the setoid model in Agda without
using any axioms or postulates, we also did not rely on UIP in Agda. The only special feature
that we used was the definitionally proof irrelevant universe of propositions Prop [6]. The setoid
model is strict [2], that is, all the equalities are definitional in Agda.

Implementation of QIITs in the setoid model. We defined an IIT with four sorts which
we call the implementation IIT for Con–Ty. There are the two Set-sorts for Con and Ty and two
Prop-sorts for their equality relations. The constructor eq is a constructor of the equality relation
for Con. The Set-sort for Ty includes an additional coercion constructor, the Prop-sorts include
constructors expressing that they are equivalence relations, congruence rules and that coercion
respects the relation. With the help of the implementation IIT, we defined the constructors
for Con–Ty. The elimination principle is defined simply by pattern matching (eliminating from
the implementation IIT). We defined both the recursion principle with uniqueness and the
dependent elimination principle for Con–Ty. All the computation rules hold definitionally.

The above method also works for the universal QIIT, we defined the recursor and formalised
uniqueness. We haven’t managed to typecheck uniqueness yet due to performance problems.

Further work. We would like to extend the universal QIIT with more type formers to allow
non-closed QIITs (metatheoretic Π), infinitary constructors, equalities as inputs of constructors,
sort equalities. We formalised that the setoid model supports arbitrary branching trees where
the order of subtrees do not matter. This is an infinitary QIT which seems not to be definable
from quotients without using the axiom of choice [4]. In fact, some QITs are known not to be
constructible without the axiom of choice [9, Section 9].

We showed that finitary QIITs exist in the setoid model, but can they be defined in the set
model (using only quotients)? There is a weak morphism of models from the setoid model to
the set model, we plan to investigate what this morphism maps the universal QIIT to.

As the setoid model is given in an intensional metatheory, it provides a computational
interpretation of the QIITs we defined. It remains to be checked what happens if we replay
the construction of other QIITs from the universal QIIT [8]. Would we still get definitional
computation rules?

A model of type theory with QIITs Kaposi and Xie

References

[1] Thorsten Altenkirch. Extensional equality in intensional type theory. In 14th Symposium on Logic
in Computer Science, pages 412 – 420, 1999.

[2] Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. Setoid type theory—
a syntactic translation. In Graham Hutton, editor, Mathematics of Program Construction, pages
155–196, Cham, 2019. Springer International Publishing.

[3] Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. Partiality, revisited. In Proceed-
ings of the 20th International Conference on Foundations of Software Science and Computation
Structures - Volume 10203, page 534–549, Berlin, Heidelberg, 2017. Springer-Verlag.

[4] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive
types. In Rastislav Bodik and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Pe-
tersburg, FL, USA, January 20 - 22, 2016, pages 18–29. ACM, 2016.

[5] Peter Dybjer. Internal type theory. In Lecture Notes in Computer Science, pages 120–134. Springer,
1996.

[6] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional Proof-
Irrelevance without K. Proceedings of the ACM on Programming Languages, pages 1–28, January
2019.

[7] Martin Hofmann. Conservativity of equality reflection over intensional type theory. In TYPES
95, pages 153–164, 1995.

[8] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, January 2019.

[9] Peter LeFanu Lumsdaine and Mike Shulman. Semantics of higher inductive types, 2012. Note.

[10] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University, 2013.

[11] The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathe-
matics. Technical report, Institute for Advanced Study, 2013.

A Cubical Approach to the Structure Identity Principle

Anders Mörtberg and Max Zeuner

Stockholm University, Stockholm, Sweden
{anders.mortberg,zeuner}@math.su.se

Homotopy Type Theory/Univalent Foundations (HoTT/UF) is a new approach to the foun-
dations of mathematics that combines intensional Martin-Löf type theory (MLTT) with homo-
topy theory. One of the most remarkable new features of this theory is the univalence axiom,
which was first introduced by Voevodsky in [8], that makes reasoning in HoTT/UF invariant
under equivalence: given two types X and Y such that X ' Y (i.e. X and Y are equivalent in
some appropriate sense) and some type-theoretic statement Φ(X), then if Φ(X) is provable in
HoTT/UF, so is Φ(Y).

Informally this desirable property is more generally expressed by the so-called structure
identity principle (SIP), which asserts that reasoning about mathematical structures is invariant
under isomorphisms of such structures. This can be made precise in HoTT/UF and formalized
versions of the SIP have been proved for large classes of mathematical structures. The first
type-theoretic formalization and proof of the SIP for algebraic structures was given by Coquand
and Danielsson in [3]. A more general version, relying on the notion of univalent categories, can
be found in section 9.8 of the HoTT-book [6]. For recent work on a higher SIP, generalizing the
categorical SIP from the HoTT-book, see Ahrens et. al. [1]. Yet another variation, that more
closely resemble the Coquand-Danielsson SIP than the one in the HoTT-book in the sense that
it is more type-theoretic than categorical, can be found in the lecture notes of Escardó [5]. The
cubical SIP that we will discuss in this abstract is mainly inspired by Escardó’s variation and
our work can be seen as a reformulation of it in cubical type theory.

In all of the aforementioned versions of the SIP the univalence axiom plays a crucial role.
However, one caveat of the univalence axiom is that it breaks the computational character of
type theory so that the SIP in HoTT/UF lacks computational content. To remedy this, cubical
type theory was developed by Coquand et. al. [2]. Cubical type theory adds new primitives to
MLTT, in particular an interval which makes it possible to replace the identity type by path
types represented as functions out of the interval. The univalence axiom is then provable in
cubical type theory using so-called Glue-types, giving it computational content. Recently, Agda
was extended with a cubical mode [4] making it possible to work in cubical type theory using a
fully fledged proof assistant [7]. We write ua for the function underlying the univalence axiom
in Cubical Agda:

ua :
{
A B : U

}
→ A ' B → PathU (A,B)

By developing the SIP in Cubical Agda we obtain a SIP with computational content that
allows us to transport programs and proofs not just between equivalent types but also between
equivalent structures on these types. Furthermore, the transported programs and proofs will all
have computational content which simplifies both programming and proving. Our formalization
of the cubical SIP can be found at:

https://github.com/agda/cubical/blob/master/Cubical/Foundations/SIP.agda

Following Escardó, we formalize structures as functions on a universe S : U → U . Such a
structure S comes equipped with a criterion telling us which equivalences of the underlying
types of two S-structures A and B are “structure-preserving” isomorphisms

ι :
{
A B :

∑

X: U
S(X)

}
→
(
fst A ' fst B

)
→ U

A cubical structure identity principle Mörtberg and Zeuner

The type of isomorphisms between A and B is thus given by:

A ∼= B :≡
∑

e: fst A ' fst B

ι(e)

Using path types, the cubical SIP that we aim to prove can then be formulated as:

(A ∼= B) ' Path∑
X: U S(X) (A,B)

In order to be able to prove the SIP we need to formulate a criterion when such a pair (S, ι)
of structures and isomorphisms defines a standard notion of structure, i.e. when such a pair
is well behaved enough for the SIP to hold. We say that (S, ι) defines a standard notion of
structure, if for all X Y : U , s : S(X), t : S(Y) and e : X ' Y we have an equivalence

PathS(Y)

(
transport

(
λi. S (ua e i)

)
s , t

)
' ι(e)

This definition of a standard notion of structure is equivalent to Escardó’s original definition,
but it interacts better with the cubical machinery of Glue-types. Because of this we can use
Glue-types to directly define, for a standard notion of structure (S, ι), an equivalence

sip : (A ∼= B) ' Path∑
X:U S(X) (A,B)

The function underlying this equivalence gives direct computational meaning to the SIP in
terms of the primitives of cubical type theory.

Applications of the cubical structure identity principle

Following Escardó, we show that adding proposition-valued axioms to a structure S as well
as combining two structures (S1, ι1) and (S2, ι2) both preserve being a standard notion of
structure. Interestingly, the cubical proofs of these facts are more direct than the corresponding
ones in HoTT/UF.

Finally, we apply the cubical SIP to the concrete example of monoids. Given a type X : U
the type of monoid structures is given by

monoid-structure(X) :≡
∑

e : X

∑

· : X→X→X

isSet(X) × monoid-axioms(X, e, ·)

where monoid-axioms(X, e, ·) is the product of the type theoretic formalization of the monoid
axioms. The type of monoids (in U) is then given by

Monoids :≡
∑

X: U
monoid-structure (X)

For two monoids M N : Monoids the type of monoid-isomophisms is given by

M ∼= N :≡
∑

ϕ: fst M ' fst N

Pathfst N

(
ϕ(eM), eN

)
×
(∏

x y: fst M

Pathfst N

(
ϕ(x·y), ϕ(x)·ϕ(y)

))

Following Escardó, we show that monoid structures are a standard notion of structure by
observing that they are obtained by combining simpler structures (i.e. pointed types and ∞-
magmas) and adding proposition-valued axioms. The cubical SIP then allows us to prove

(
M N : Monoids

)
→
(
M ∼= N

)
' PathMonoids(M , N)

which in turn lets us transport programs and proofs between isomorphic monoids without
sacrificing the computational content of the transported programs and proofs.

2

A cubical structure identity principle Mörtberg and Zeuner

References

[1] Benedikt Ahrens, Paige R. North, Michael Shulman, and Dimitris Tsementzis. A higher
structure identity principle. https://benediktahrens.net/talks/BA-HSIP-FAUM-2019.pdf, dec
2019. Slides from FAUM 2019, https://cj-xu.github.io/faum/.

[2] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical Type Theory:
a constructive interpretation of the univalence axiom. IfCoLog Journal of Logics and their
Applications, 4(10):3127–3169, November 2017.

[3] Thierry Coquand and Nils Anders Danielsson. Isomorphism is equality. Indagationes Math-
ematicae, 24(4):1105–1120, 2013.

[4] Agda developers. Agda 2.6.0.1 documentation. https://agda.readthedocs.io/en/v2.6.0.1/,
2019.

[5] Mart́ın Hötzel Escardó. Introduction to univalent foundations of mathematics with agda.
https://www.cs.bham.ac.uk/∼mhe/HoTT-UF-in-Agda-Lecture-Notes/index.html, 2019.

[6] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[7] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical agda: a dependently typed
programming language with univalence and higher inductive types. Proceedings of the ACM
on Programming Languages, 3:1–29, jul 2019.

[8] Vladimir Voevodsky. The equivalence axiom and univalent models of type theory. (Talk at
CMU on February 4, 2010). Preprint arXiv:1402.5556, 2014.

3

Higher categories of algebras for higher inductive definitions

Paolo Capriotti1 and Christian Sattler2 ∗

1 Darmstadt Technical University, Darmstadt, Germany
paolo@capriotti.io

2 University of Nottingham, Nottingham, United Kingdom
sattler.christian@gmail.com

Abstract

We present an interpretation of the theory of signatures introduced in [6] based on Segal
types in homotopy type theory. As a consequence, we obtain a construction of an internal
higher category of algebras for an arbitrary definition of a higher inductive(-inductive)
type. We show its finite completeness and use it to prove the equivalence between the
induction principle and the initiality property.

1 Modelling signatures via Segal types

Based on the corresponding notion in [6, 7], let us define a signature model as a CwF equipped
with a universe U closed under equality types, and Π-types with domain in U . The theory of
signatures is the initial signature model.1 A signature for a higher inductive-inductive type is
then simply a context in the theory of signatures.

We construct a signature model in (marked) semisimplicial types on an arbitrary model C of
homotopy type theory. Since it is not known how to work with semisimplicial types internally,
we use two-level type theory ([2, 3]) as an internal language of presheaves over C. Following
the main ideas of [5], we augment semisimplicial types with a type of ”markings” on the edges.
This makes it possible to express both Segal and completeness conditions in terms of lifting
properties.

We distinguish several classes of fibrations, corresponding to different choices of lifting prop-
erties. The most general are Reedy fibrations, as in [8, 3]. To obtain (internal) higher categorical
semantics, we also consider inner fibrations, i.e. maps orthogonal to inner horn inclusions, giving
a very general notion of “dependent higher category”. To capture the correct notion of algebra
morphism (rather than algebra relation), we must also consider left fibrations, corresponding
to covariant families of types.

Our model is as follows: contexts are marked semisimplicial types, types are relative com-
plete Segal types, i.e. Reedy fibrant presheaves over the category of elements of the base context
such that the corresponding display map is an inner isofibration satisfying a completeness condi-
tion. The universe is set to be a classifying presheaf for left fibrations, defined as a subpresheaf
of the standard universe in the Reedy model [8, 3] consisting of those simplices corresponding
to left fibrations. Finally, Π-types and equality types are interpreted as in the Reedy model.

Since left fibrations are in particular exponentiable [4], it follows that the Π-type of a left
fibration and an inner fibration is again an inner fibration. Closure of left fibrations under
equality types follows by a cancellation property of left fibrations. Finally, the classifier for left

∗Supported by USAF grant FA9550-16-1-0029.
1The theory of signatures in [6] contains more type formers: it allows parameters from an ambient model

of homotopy type theory for both type signatures and constructors in signatures for higher inductive types. In
this abstract, we use a reduced version for the sake of simplifying the presentation. Our results apply to the
original notion of [6], optionally strengthened with judgmental β-laws for the identity type in U .

Higher categories of algebras for higher inductive definitions Capriotti and Sattler

fibrations models the higher category of small types (with respect to the chosen universe), in
particular is a complete Segal type.

2 Equivalence of initiality and induction

For any signature Γ, we want to think of an initial object of the corresponding higher category
of algebras A as the higher inductive-inductive type defined by Γ. In other words, we want to
relate the initiality property in A with the induction principle associated to Γ.

This can be done in two steps. First, similarly to [1], we introduce the notion of section
initiality : an object H in A is section-initial if for all objects X of A, every morphism H → X
has a section. Then a well-known categorical argument implies that if A has finite limits,
section-initiality and initiality coincide. After that, we relate section-initiality of H to the
induction principle for H. The latter is obtained by interpreting the theory of signatures into
the model of (homotopical) Reedy presheaves on the category 0→ 1→ 2, where the composed
arrow 0 → 2 is a weak equivalence, resulting in notions of displayed algebra and displayed
algebra section which can be shown to be equivalent to those defined in [6].

It remains to show that categories of algebras have limits. We restrict our attention to finite
limits, because they are sufficient for our purposes, and they can be expressed without having
to strengthen the requirements on the base model C. We prove the existence of finite limits in
categories of algebras in two steps. First, we enhance our original model by adding a type of
markings over cones of finite diagrams to the contexts (marked semisimplicial types), preserved
by context morphisms; for types, marked cones are required to be limiting (relatively to the
context). Then, we refine this model by adding to each type a choice of a marked cone for every
diagram.

The first model is a reasonably simple modification of the standard Reedy model of
presheaves over a direct category, with some extra work for the type forming operations. The
second model is more ad-hoc, but the universe and Π-types in the first model naturally extend
to the second. Therefore, we get an interpretation of the theory of signatures into (internal)
finitely complete higher categories which is compatible with the previously established inter-
pretation, proving that every higher category of algebras has finite limits.

3 Conclusion and further work

So far, we have shown that every signature for a higher inductive-inductive definition admits a
higher category of algebras with finite limits, and that initiality in such categories is equivalent
to a syntactically defined induction principle.

However, we have not proved that such initial algebras exist. One could postulate the
existence of such initial algebras as an axiom of the theory. This could be justified by showing,
for example, that in the standard interpretation of homotopy type theory into simplicial sets
(within a classical metatheory), the corresponding higher categories of algebras are locally
presentable, hence in particular have initial objects.

Alternatively, we speculate that it might be possible to find a general enough induction
principle, which is similarly justifiable in a classical metatheory, but such that it does not
depend on the specifics of the theory of signatures. Then one could assume such principle as
an axiom, and prove the existence of initial algebras internally.

2

Higher categories of algebras for higher inductive definitions Capriotti and Sattler

References

[1] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nordvall Forsberg.
Quotient inductive-inductive types. In International conference on foundations of software science
and computation structures, pages 293–310. Springer, 2018.

[2] Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending Homotopy Type Theory with
strict equality. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL annual conference
on Computer Science Logic (CSL 2016), volume 62, pages 21:1–21:17, Dagstuhl, Germany, 2016.

[3] Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type theory and
applications. ArXiv e-prints, May 2017.

[4] David Ayala and John Francis. Fibrations of ∞-categories. ArXiv e-prints, February 2017.

[5] Yonatan Harpaz. Quasi-unital ∞-categories. Algebraic and Geometric Topology, 15(4):2303–2381,
2015.

[6] Ambrus Kaposi and András Kovács. A Syntax for Higher Inductive-Inductive Types. In Hélène
Kirchner, editor, 3rd International Conference on Formal Structures for Computation and Deduc-
tion (FSCD 2018), volume 108, pages 20:1–20:18, Dagstuhl, Germany, 2018.

[7] Ambrus Kaposi and András Kovács. Signatures and induction principles for higher inductive-
inductive types. ArXiv e-prints, February 2019.

[8] Michael Shulman. Univalence for inverse diagrams and homotopy canonicity. Mathematical Struc-
tures in Computer Science, pages 1–75, Jan 2015.

3

Generalizations of Quotient Inductive-Inductive Types ∗

András Kovács and Ambrus Kaposi

Eötvös Loránd University, Budapest, Hungary
kovacsandras|akaposi@inf.elte.hu

Quotient inductive-inductive types (QIITs) are the most general class of inductive types
studied thus far in a set-truncated setting, i.e. in the presence of uniqueness of identity proofs
(UIP). In the current work, we develop QIITs further, focusing on applications in practical
metatheory of type theories. We extend previous work on QIITs [5] with the following:

1. Large constructors, large elimination and algebras at different universe levels. This
fills in an important formal gap; large models are routinely used in the metatheory of
type theories, but they have not been presented explicitly in previous QIIT literature.

2. Infinitary constructors. This covers real, surreal [6] and ordinal numbers. Additionally,
the theory which describes QII signatures is itself a large and infinitary QIIT, which allows
the theory of signatures to describe its own signature (modulo universe levels), and provide
its own model theory. This was not possible previously in [5], where only finitary QIITs
were described.

3. Recursive equations, i.e. equations appearing as assumptions of constructors. These
have occurred previously in syntaxes of cubical type theories, as boundary conditions
[4, 1, 2].

4. Sort equations. Sort equations were included in Cartmell’s generalized algebraic theories
(GATs) [3], which overlap significantly with finitary QIITs. Sort equations appear to be
useful for algebraic presentations of Russell-style and cumulative universes [7].

Self-describing signatures

In the current work, we would also like to streamline and make more rigorous the specification of
signatures. Previous descriptions of GATs [3, 7] used raw syntax with well-formedness relations
to describe signatures, which is rather unwieldy to formally handle. Also, the precursor of the
current work [5] used an ad-hoc QIIT to describe signatures, which did not have a model theory
worked out, and its existence was simply assumed.

In contrast, equipped with large elimination and self-description, we are able to specify
signatures and develop a model theory for signatures, without ever using raw syntax or assuming
the existence of a particular QIIT. We do the following in order.

1. We specify a notion of model for the theory of signatures (ToS); this is a category with
family (CwF) extended with several type formers, allowing to represent a signature as a
typing context, with types specifying various constructors.

2. We say that a signature is a context in an arbitrary model, i.e. a function with type
(M : ToS) → ConM . This can be viewed as a fragment of a Church-encoding; here we

∗Both authors author were supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002). The second author was supported by by the National Research, Devel-
opment and Innovation Fund of Hungary, financed under the Thematic Excellence Programme funding scheme,
Project no. ED 18-1-2019-0030 (Application-specific highly reliable IT solutions).

Generalizations of Quotient Inductive-Inductive Types Kovács, Kaposi

do not care about encoding the whole syntax of ToS, nor the initiality of the syntax,
we only need a representation of signatures and the ability to interpret a signature in a
ToS-model. For example, the signature for natural number algebras is a function

λ(M : ToS). (•M .M (N : UM) .M (zero : ElM N) .M (suc : N ⇒M ElM N))

which maps every model M to a typing context in M , consisting of the declaration of a
sort and two constructors.

3. We give a semantics for signatures, as a particular M : ToS model which interprets
each CwF context Γ as a structured category of Γ-algebras. E.g. for the signature of
natural numbers, we get a structured category of N-algebras, with N-homomorphisms as
morphisms.

4. We give a (large, infinitary) signature for ToS itself, such that interpreting the signa-
ture in the semantic model yields a structured category of ToS-algebras. From this, we
acquire notions of recursion and induction, hence we gain the ability to define further
constructions by induction on an assumed initial model of the theory of signatures.

In the above construction, everything is appropriately indexed with universe levels (we omit
the details), and there is a “bump” of levels at every instance of self-description.

Extending semantics to infinitary constructors and sort equations.

Previously in [5], contexts in ToS were interpreted as CwFs of algebras with extra structure,
substitutions as strict morphisms of such CwFs, and types as displayed CwFs. Infinitary
constructors force a major change: substitutions must be interpreted as weak CwF morphisms,
and types as CwF isofibrations, which are displayed CwFs with an additional lifting structure
for isomorphisms. In short, this means that the semantics of infinitary constructors can be only
given mutually with a form of invariance under algebra isomorphisms. Recursive equations
similarly require this kind of semantics.

However, strict sort equations are not invariant under isomorphisms. For example, if we
have an isomorphism in Set× Set between (A,B) and (A′, B′), and we also know that A = B
strictly, then it is not necessarily the case that A′ = B′. This means that a strict semantics for
sort equations is incompatible with the isofibration semantics for infinitary constructors. Our
current solution is to simply keep the troublesome features apart. Hence we have

1. A theory of signatures supporting recursive equations and infinitary constructors, but no
sort equations. This ToS can describe itself, and by a term model construction we can
reduce all described QIITs to an assumed syntax of the same ToS. This term model con-
struction is also weakened (i.e. it is up to algebra isomorphisms), hence it is significantly
more complicated than in [5].

2. A theory of signatures supporting sort equations, but no recursive equations and infinitary
constructors. This ToS is infinitary and has no sort equations, so we can give it a model
theory as an infinitary QIIT. This ToS supports a stricter semantics which is not invariant
under isomorphisms, and we also have a term model construction. Here, the semantics
and the term models are straightforward extensions of [5].

Generalizations of Quotient Inductive-Inductive Types Kovács, Kaposi

References

[1] Carlo Angiuli, Robert Harper, and Todd Wilson. Computational higher type theory i: Abstract
cubical realizability. arXiv preprint arXiv:1604.08873, 2016.

[2] Carlo Angiuli, Kuen-Bang Favonia Hou, and Robert Harper. Cartesian cubical computational type
theory: Constructive reasoning with paths and equalities. Computer Science Logic 2018, 2018.

[3] John Cartmell. Generalised algebraic theories and contextual categories. Annals of Pure and
Applied Logic, 32:209–243, 1986.

[4] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: a
constructive interpretation of the univalence axiom. arXiv preprint arXiv:1611.02108, 2016.

[5] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. Proceedings of the ACM on Programming Languages, 3(POPL):2, 2019.

[6] The Univalent Foundations Program. Homotopy type theory: Univalent foundations of mathemat-
ics. Technical report, Institute for Advanced Study, 2013.

[7] Jonathan Sterling. Algebraic type theory and universe hierarchies. arXiv preprint arXiv:1902.08848,
2019.

3 Type-theoretic systems and tools (WG2)

35

Submitted to:
TYPES 2020

c© C. Stolze
This work is licensed under the
Creative Commons Attribution License.

A Sound and Complete Algorithm
for Union and Intersection Types in Coq

Claude Stolze
IRIF, Université de Paris

stolze@irif.fr

This paper shortly presents a certified subtyping algorithm for a type system with intersection, union
and the universal type U, as it was published in [5], fully certified in Coq [7] and actually used in
a prototype of a LF-based theorem prover Bull [6], based on intersection and union types. The
soundness and completeness of such an algorithm is not trivial, even though it is a crucial part of the
proof of the decidability of type reconstruction and type checking.

Modern theorem provers such as Coq allow us to design and certify algorithms such as the ones for sub-
typing. We have designed and proved properties for our subtyping algorithm and, thereafter, we certified
them in Coq, in the spirit of Bessai’s Coq implementation of the subtyping algorithm for intersection
types [3]. The full source code of the Coq implementation can be found at https://github.com/
cstolze/Bull-Subtyping. The certification of the algorithm occurs in two steps: first, we define
the subtyping relation and prove some basic properties; then, we implement the subtyping algorithm
and show it is sound and complete w.r.t. the subtyping relation. The Coq implementation can then be
extracted into a valid OCaml (or Haskell) program.

1 The algorithm, shortly explained

The types have the following BNF syntax σ ,τ,ρ ::= α | σ ∩σ | σ ∪σ | σ → σ | U. Subtyping is defined
as the theory Ξ from [1]. The subtyping algorithm proceeds structurally on some normal form of the
types. We thus define the Arrow Normal Form (ANF) as follows :

Definition 1 (ANF). A type is in Arrow Normal Form (ANF) if: it is a type variable, or it is a type σ→ τ ,
where σ is an intersection of ANFs (or U) and τ is a union of ANFs. Note that U is not an ANF.

Definition 2 (CANF and DANF). These normal forms are similar to the usual Conjunctive and Dis-
junctive Normal Forms (CNF and DNF) found in boolean algebras. An intersection of unions of ANFs
is called a Conjunctive Arrow Normal Form (CANF), or a union of intersections of ANFs is called a
Disjunctive Arrow Normal Form (DANF). The type U is considered to be a CANF and a DANF.

We use four rewriting subroutines, R1, R2, R3, and R4, in order to rewrite types in normal form.
The first routine R1 removes all useless occurrences of U.

Definition 3. (Subroutine R1)
The term rewriting system R1 (called deleteOmega in the Coq code) is defined as follows: i) U∩σ and
σ ∩U rewrite into σ ; ii) U∪σ and σ ∪U rewrite into U; iii) σ → U rewrites into U.

The subroutines R2 and R3 rewrite a type in conjunctive and disjunctive normal form, respectively.

Definition 4. (Subroutines R2 and R3) i) The term rewriting system R2 rewrites a type into its CNF;
ii) The term rewriting system R3 rewrites a type into its DNF.

2 A Sound and Complete Algorithm for Union and Intersection Types in Coq

Subroutine R4 rewrites a type as an intersection of ANFs.
Definition 5. (Subroutine R4) The term rewriting system R4 rewrites an arrow type into an intersection
of ANFs, it is defined as follows: i) σ → τ rewrites into R3(σ)→R2(τ); ii) ∪iσi→∩hτh rewrites into
∩i(∩h(σi→ τh)).
We can finally introduce the main algorithm A as follows:
Definition 6. (Algorithm A)
The main algorithm A takes as inputs two types σ in DANF and τ in CANF, and decides whether σ 6 τ
by structural induction as follows:

– if σ and τ are two type variables α and β , then σ 6 τ if, and only if, α ≡ β ;

– if τ ≡ U, then σ 6 τ;

– if σ ≡ U and τ 6≡ U, then σ 66 τ;

– if σ ≡ σ1∪σ2, then σ 6 τ if, and only if, σ1 6 τ and σ2 6 τ;

– if τ ≡ τ1∩ τ2, then σ 6 τ if, and only if, σ 6 τ1 and σ 6 τ2;

– if σ ≡ σ1∩σ2, then σ 6 τ if, and only if, σ1 6 τ or σ2 6 τ;

– if τ ≡ τ1∪ τ2, then σ 6 τ if, and only if, σ 6 τ1 or σ 6 τ2;

– if σ ≡ σ1→ σ2 and τ ≡ τ1→ τ2, then σ 6 τ if, and only if, τ1 6 σ1 and σ2 6 τ2;

– for all other cases, σ 66 τ .

1.1 Soundness and correctness of the algorithm

Theorem 1 (Soundness of A).
Let σ (resp. τ) be in DANF (resp. CANF). If A (σ ,τ), then σ 6 τ . The proof proceeds by induction.
Theorem 2 (Completeness of A). Let σ (resp. τ) be in DANF (resp. CANF), such that σ 6 τ . We have
that A (σ ,τ). The proof proceeds by mutual induction.
The Coq implementation of A is called main_algo and takes as input two types σ and τ , a proof that σ
is in DANF and τ in CANF, and returns either a proof that σ 6 τ , or a proof that σ 66 τ .

References
[1] Franco Barbanera, Mariangiola Dezani-Ciancaglini & Ugo de’Liguoro (1995): Intersection and union types:

syntax and semantics. Information and Computation 119(2), pp. 202–230.
[2] Yves Bertot & Pierre Castéran (2004): Interactive theorem proving and program development: Coq’Art: the

calculus of inductive constructions. Springer Science & Business Media.
[3] Jan Bessai (2016): Extracting a formally verified Subtyping Algorithm for Intersection Types from Ideals and

Filters. Talk at TYPES, slides.
[4] Alain Frisch, Giuseppe Castagna & Véronique Benzaken (2008): Semantic subtyping: Dealing set-

theoretically with function, union, intersection, and negation types. Journal of the ACM 55(4), pp. 19:1–19:64.
[5] Luigi Liquori & Claude Stolze (2017): A Decidable Subtyping Logic for Intersection and Union Types. In:

Topics In Theoretical Computer Science (TTCS), Lecture Notes in Computer Science 10608, Springer-Verlag,
pp. 74–90.

[6] Claude Stolze (2019): Bull. https://github.com/cstolze/Bull.
[7] Claude Stolze (2019): Combining union, intersection and dependent types in an explicitly typed lambda-

calculus. Ph.D. thesis, Université Côte d’Azur, Inria.

Formalizing π-calculus in Guarded Cubical Agda

Niccolò Veltri1 and Andrea Vezzosi2

1 Tallinn University of Technology, Estonia
niccolo@cs.ioc.ee

2 IT University of Copenhagen, Denmark
avez@itu.dk

The Nakano modality . [10] is an operator that, when added to a logic or a type system,
encodes time at the level of formulae or types. The formula .A stands for “A holds one time
step in the future”, similarly the inhabitants of type .A are the inhabitants of A in the next time
step. The Nakano modality comes with a guarded fixpoint combinator fixA : (.A → A) → A
ensuring the existence of a solution for all guarded recursive equations in any type. Logically,
this corresponds to a version of Löb’s axiom for the . modality.

Guarded recursion has been added to Martin-Löf dependent Type Theory in two different
ways: using delayed substitutions as in Guarded Dependent Type Theory (gDTT) [2] or using
ticks as in Clocked Type Theory (CloTT) [1]. In these settings, the Nakano modality is employed
for constructing guarded recursive types, i.e. recursive types in which the recursive variables
are guarded by .. These are computed using the fixpoint combinator at type U, which is the
universe of small types. For example, the guarded recursive type of infinite streams of natural
numbers is obtained as Str = fixUX.N×.X and it satisfies the type equivalence Str ' N×.Str.
Recursively defined terms of guarded recursive types are causal and productive by construction.

Dependent type theories with guarded recursion have proved themselves suitable for the
development of denotational semantics of programming languages, as demonstrated by Paviotti
et al’s formalization of PCF [11] and Møgelberg and Paviotti’s formalization of FPC in gDTT
[8]. Here we continue on this line of work by constructing a denotational model of Milner’s
early π-calculus in a suitable extension of CloTT. Traditionally, the denotational semantics
of π-calculus is developed in specific categories of (presheaves over) profunctors [3] or domains
[12, 6]. Fundamentally, the semantic domains have to be sufficiently expressive to handle the
non-deterministic nature of π-calculus processes. In domain theoretic semantics, for example,
this is achieved by employing powerdomains. Synthetic analogues of these constructions are
not available in guarded type theories such as gDTT or CloTT, but it can be constructed if we
set our development in extensions of these type systems with Higher Inductive Types (HITs),
a characterizing feature of Homotopy Type Theory (HoTT).

We work in Ticked Cubical Type Theory (TCTT) [9], an extension of Cubical Type Theory
(CTT) [5] with guarded recursion and the ticks from CloTT. CTT is an implementation
of a variant of HoTT, giving computational interpretation to its characteristic features: the
univalence axiom and HITs. In particular we will define the countable powerset datatype,
P∞A, as a HIT [4], as it will serve as our synthetic powerdomain.

TCTT also has ticks. The Nakano modality is now indexed over the sort of ticks, .(α :
tick).A, and its inhabitants are to be thought of as dependent functions taking in input a tick β
and returning an inhabitant of A[β/α]. So ticks correspond to resources witnessing the passing
of time that can be used to access values available only at future times. We write .A for
.(α : tick).A when α does not occur free in A. The . modality is an applicative functor, its
unit is called next. Ticks allow to extend the applicative structure to dependent types.

For the specification of the π-calculus syntax, we assume the existence of a countable set
of names, i.e., for every natural number n, we assume given a type Namen, the set containing
the first n names. Each process can perform an output, an input or a silent action. The type

Veltri and Vezzosi

of actions is indexed by two natural numbers, representing the number of free names and the
sum of free and bound names, respectively. The input action binds the input name.

ch, v : Namen

out ch v : Actnn
ch : Namen

inp ch : Actn (n+ 1) τ : Actnn

The π-calculus syntax includes the nil process, prefixing, binary sums, parallel composition,
restriction, a matching operator and replication.

end : Pin
a : Actnm P : Pim

a · P : Pin

P : Pin Q : Pin

P ⊕Q : Pin

P : Pin Q : Pin

P‖Q : Pin

P : Pi (n+ 1)

νP : Pin

x, y : Namen P : Pin

guardx y P : Pin
P : Pin
!P : Pin

The processes in Pin are quotiented by a structural congruence relation ≈, which, among other
things, characterizes the replication operator in terms of parallel composition: given a process
P : Pin, we have !P ≈ P‖!P . The early operational semantics is inductively defined as a type
family − [−]7→− : Pin→ Labelnm→ Pim→ U. Following [7], the type Labelnm of transition
labels include a silent action, free and bound outputs, and free and bound inputs.

For the denotational semantic domain, we consider the guarded recursive type

Proc := fixN→UX.λn.P∞(Step (λm. . α.X αm)n)

where StepY n := Σ(m : N). Labelnm× Y m. In other words, Procn is the type satisfying the
type equivalence Procn ' P∞(Σm : N. Labelnm × .Procm). Let Unfold be the right-to-left
morphism underlying the latter equivalence. To each syntactic process P : Pin we associate a
semantic process JP K : Procn. The interpretation respects the structural congruence relation,
that is P ≈ Q implies JP K = JQK. The early operational semantics transitions are modelled
using the membership operation: given P [a] 7→Q with a : Labelnm, we have (m, a, next JQK) ∈
Unfold JP K. Nevertheless, Proc is not closed under name substitutions. Therefore, to obtain a
sound interpretation of π-calculus, we need to move to the following type:

PiModn := Σ(P : Π(m : N).(Namen→ Namem)→ Procm).

Π(m,m′ : N)(f : Namem→inj Namem′)(ρ : Namen→ Namem).

mapProc f (P mρ) = P m′ (f ◦ ρ)

where A→inj B is the type of injective maps between A and B, while mapProc corresponds to
the action of the functor Proc on injective renamings.

TCTT provides an extensionality principle for guarded recursive types: strong bisimilarity
is equivalent to path equality [9]. For Procn, this says that semantic early bisimilarity is
equivalent to path equality. In our work, we also define a syntactic notion of early bisimilarity
and early congruence and we prove the denotational semantics fully abstract wrt. it.

We formalized the whole development in our own version of the Agda proof assistant based
on TCTT, called Guarded Cubical Agda, an extension of Vezzosi et al’s Cubical Agda [14]. An
introduction to Guarded Cubical Agda and a detailed description of the formalization can be
found in the full paper [13].

Acknowledgments Niccolò Veltri was supported by the ESF funded Estonian IT Academy
research measure (project 2014-2020.4.05.19-0001). Andrea Vezzosi was supported by a research
grant (13156) from VILLUM FONDEN.

2

Veltri and Vezzosi

References

[1] P. Bahr, H. B. Grathwohl, and R. E. Møgelberg. The clocks are ticking: No more delays! In Proc.
of the 32nd Ann. ACM/IEEE Symp. on Logic in Computer Science, LICS 2017, pages 1–12, 2017.

[2] A. Bizjak, H. B. Grathwohl, R. Clouston, R. E. Møgelberg, and L. Birkedal. Guarded dependent
type theory with coinductive types. In Proc. of the 19th Int. Conf. on Foundations of Software
Science and Computation Structures, FOSSACS 2016, pages 20–35, 2016.

[3] G. L. Cattani, I. Stark, and G. Winskel. Presheaf models for the pi-calculus. In Proc. of the 7th
Int. Conf. on Category Theory and Computer Science, CTCS 1997, pages 106–126, 1997.

[4] J. Chapman, T. Uustalu, and N. Veltri. Quotienting the delay monad by weak bisimilarity. Math.
Struct. in Comp. Sci., 29(1):67–92, 2019.

[5] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg. Cubical type theory: A constructive inter-
pretation of the univalence axiom. FLAP, 4(10):3127–3170, 2017.

[6] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the pi-calculus (extended
abstract). In Proc. of the 11th Ann. IEEE Symp. on Logic in Computer Science, LICS 1996,
pages 43–54, 1996.

[7] R. Milner, J. Parrow, and D. Walker. Modal logics for mobile processes. Theor. Comput. Sci.,
114(1):149–171, 1993.

[8] R. E. Møgelberg and M. Paviotti. Denotational semantics of recursive types in synthetic guarded
domain theory. Math. Struct. in Comp. Sci., 29(3):465–510, 2019.

[9] R. E. Møgelberg and N. Veltri. Bisimulation as path type for guarded recursive types. PACMPL,
3(POPL):4:1–4:29, 2019.

[10] H. Nakano. A modality for recursion. In Proc. of the 15th Ann. IEEE Symp. on Logic in Computer
Science, LICS 2000, pages 255–266, 2000.

[11] M. Paviotti, R. E. Møgelberg, and L. Birkedal. A model of PCF in guarded type theory. Electr.
Notes Theor. Comput. Sci., 319:333–349, 2015.

[12] I. Stark. A fully abstract domain model for the pi-calculus. In Proc of the 11th Ann. IEEE Symp.
on Logic in Computer Science, LICS 1996, pages 36–42, 1996.

[13] N. Veltri and A. Vezzosi. Formalizing π-calculus in guarded cubical agda. In Proc. of the 9th ACM
SIGPLAN Int. Conf. on Certified Programs and Proofs, CPP 2020, pages 1–14, 2020.

[14] A. Vezzosi, A. Mörtberg, and A. Abel. Cubical agda: A dependently typed programming language
with univalence and higher inductive types. PACMPL, 3(ICFP):87:1–87:29, 2019.

3

Ordinal Notation Systems in Cubical Agda

Fredrik Nordvall Forsberg1 and Chuangjie Xu2

1 University of Strathclyde, Glasgow, UK
2 Ludwig-Maximilians-Universität München, Munich, Germany

Abstract

We present ordinal notation systems representing ordinals below ε0, using recent type-
theoretical innovations such as mutual inductive-inductive definitions and higher inductive
types. Ordinal arithmetic can be developed for these systems, and they admit a transfinite
induction principle. We prove that the notation systems are equivalent, and so we can
transport results between them using the univalence principle. All our constructions have
been implemented in cubical Agda.

Introduction

Ordinals and ordinal notation systems play an important role in program verification, since
they can be used to prove termination of programs — using ordinals to verify that programs
terminate was suggested already by Turing [Tur49]. The idea is to assign an ordinal to each
input, and then prove that the assigned ordinal decreases for each recursive call [DM79]. Hence
the program must terminate by the well-foundedness of the order on ordinals.

If one wants to carry out such proofs in a theorem prover, one must first represent ordi-
nals inside it. This is usually done via some kind of ordinal notation system (however see
Blanchette, Popescu and Traytel [BPT14] for well-orders encoded directly in Isabelle/HOL,
and Schmitt [Sch17] for an axiomatic method, which is implemented in the KeY program
verification system). Typically, ordinals are represented by trees [Der93, DR92]; for instance,
binary trees can represent the ordinals below ε0 as follows: the leaf represents 0, and a tree
with subtrees representing ordinals α and β represents the sum ωα + β. However, an ordinal
may have multiple such representations. As a result, traditional approaches to ordinal notation
systems [Buc91, Sch77, Tak87] usually have to single out a subset of ordinal terms in order to
provide unique representations. Instead, we show how modern type-theoretic features in cubical
Agda can be used to directly give faithful representations of ordinals below ε0. More details can
be found in our recent paper [NFXG20].

Agda Formalisation. Our development has been fully formalised in Agda, and can be found
at https://doi.org/10.5281/zenodo.3588624.

An Ordinal Notation System Using Mutual Definitions

The first feature we use is mutual inductive-inductive definitions [NF13]. This allows us to
define an ordinal notation system for ordinals below ε0 based on Cantor normal forms

ωβ1 + ωβ2 + · · ·+ ωβn with β1 ≥ β2 ≥ · · · ≥ βn.

By insisting that the ordinal notations βi are again in Cantor normal form, and given in
decreasing order, we can recover a unique representation of ordinals. To achieve this, we define
MutualOrd : Type0 simultaneously with an order relation < : MutualOrd→ MutualOrd→ Type0,
and a function fst : MutualOrd→ MutualOrd, which extracts the first exponent of an ordinal in
Cantor normal form:

Ordinal Notation Systems in Cubical Agda Nordvall Forsberg and Xu

data MutualOrd where
0 : MutualOrd
ωˆ + [] : (a b : MutualOrd) → a ≥ fst b → MutualOrd

data < where
<1 : 0 < ωˆ a + b [r]
<2 : a < c → ωˆ a + b [r] < ωˆ c + d [s]
<3 : a ≡ c → b < d → ωˆ a + b [r] < ωˆ c + d [s]

fst 0 = 0
fst (ωˆ a + []) = a

where we write a ≥ b = (a > b)] (a ≡ b). Note how all definitions refer to each other. (It is
possible to avoid the simultaneous recursive definition of the function fst by defining its graph
inductively instead.) An advantage is that there are no intermediate “junk” terms, and that the
more precise types often suggest necessary lemmas to prove. This can be seen already when
defining basic operations such as ordinal addition and multiplication. To justify that MutualOrd
really represents ordinals, we show that it satisfies transfinite induction:

Theorem. Transfinite induction holds for MutualOrd, i.e. there is a proof

MTI : (P : MutualOrd → Type `)→ (∀ x → (∀ y → y < x → P y) → P x)→ ∀ x → P x.

An Ordinal Notation System Using Higher Inductive Types

We use the feature of higher inductive types [LS19] that has recently been added to Agda under
the --cubical flag [VMA19] to define a different ordinal notation system for ordinals below ε0
as a quotient inductive type [ACD+18]:

data HITOrd : Type0 where
0 : HITOrd
ωˆ ⊕ : HITOrd → HITOrd → HITOrd
swap : ∀ a b c → ωˆ a ⊕ ωˆ b ⊕ c ≡ ωˆ b ⊕ ωˆ a ⊕ c
trunc : isSet HITOrd

Note how the path constructor swap is used to identify multiple representations of the same
ordinal — this way, we again recover uniqueness. Because all operations on HITOrd must respect
swap, it is not so straightforward to implement ordinal arithmetic on HITOrd directly. However,
it is not hard to implement Hessenberg arithmetic [Hes06] — a variant of ordinal arithmetic
which is commutative — using cubical Agda’s pattern matching.

MutualOrd and HITOrd are Equivalent

Different representations are convenient for different purposes. For instance, the higher inductive
type approach is convenient for defining e.g. commutative Hessenberg arithmetic, while the
mutual representation is convenient for ordinary ordinal arithmetic, and proving transfinite
induction. Using the univalence principle [UFP13], we can transport constructions and properties
between the different systems as needed, after proving that they indeed are equivalent:

Theorem. MutualOrd and HITOrd are equivalent, i.e. there is M'H : MutualOrd ' HITOrd.

The direction of the equivalence from MutualOrd to HITOrd is easy: we simply forget about the
order witnesses. The other direction is more interesting, and basically amounts to implementing
insertion sort on MutualOrd.

2

Ordinal Notation Systems in Cubical Agda Nordvall Forsberg and Xu

References

[ACD+18] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nord-
vall Forsberg. Quotient inductive-inductive types. In Christel Baier and Ugo Dal Lago,
editors, Foundations of Software Science and Computation Structures, volume 10803 of
Lecture Notes in Computer Science, pages 293–310, Heidelberg, Germany, 2018. Springer.

[BPT14] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Cardinals in Is-
abelle/HOL. In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving,
volume 8558 of Lecture Notes in Computer Science, pages 111–127, Heidelberg, Germany,
2014. Springer.

[Buc91] Wilfried Buchholz. Notation systems for infinitary derivations. Archive for Mathematical
Logic, 30:227–296, 1991.

[Der93] Nachum Dershowitz. Trees, ordinals and termination. In Marie-Claude Gaudel and Jean-
Pierre Jouannaud, editors, Theory and Practice of Software Development, volume 668 of
Lecture Notes in Computer Science, pages 243–250, Heidelberg, Germany, 1993. Springer.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Com-
munications of the ACM, 22(8):465–476, 1979.

[DR92] Nachum Dershowitz and Edward M. Reingold. Ordinal arithmetic with list structures.
In Anil Nerode and Michael Taitslin, editors, Logical Foundations of Computer Science,
volume 620 of Lecture Notes in Computer Science, pages 117–138, Heidelberg, Germany,
1992. Springer.

[Hes06] Gerhard Hessenberg. Grundbegriffe der Mengenlehre, volume 1. Vandenhoeck & Ruprecht,
Göttingen, Germany, 1906.

[LS19] Peter Lefanu Lumsdaine and Michael Shulman. Semantics of higher inductive types. Mathe-
matical Proceedings of the Cambridge Philosophical Society, pages 1–50, 2019.

[NF13] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University,
2013.

[NFXG20] Fredrik Nordvall Forsberg, Chuangjie Xu, and Neil Ghani. Three equivalent ordinal notation
systems in Cubical Agda. In Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs (CPP ’20), pages 172–185. ACM, 2020.

[Sch77] Kurt Schütte. Proof Theory. Springer, Heidelberg, Germany, 1977.

[Sch17] Peter H. Schmitt. A mechanizable first-order theory of ordinals. In Renate Schmidt and
Cláudia Nalon, editors, Automated Reasoning with Analytic Tableaux and Related Methods,
volume 10501 of Lecture Notes in Computer Science, pages 331–346, Heidelberg, Germany,
2017. Springer.

[Tak87] Gaisi Takeuti. Proof Theory. North-Holland Publishing Company, Amsterdam, 2 edition,
1987.

[Tur49] Alan Turing. Checking a large routine. In Report of a Conference on High Speed Auto-
matic Calculating Machines, pages 67–69, Cambridge, UK, 1949. University Mathematical
Laboratory.

[UFP13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[VMA19] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: a dependently typed
programming language with univalence and higher inductive types. Proceedings of the ACM
on Programming Languages, 3(ICFP):87:1–87:29, 2019.

3

Universe Polymorphism Expressed as a Rewriting System
Guillaume Genestier123

1 Université Paris-Saclay, ENS Paris-Saclay, Inria, CNRS, LSV
2 MINES ParisTech, PSL University

3 This work was supported by the Cost Action EUTypes CA15123

The λΠ-calculus modulo rewriting (λΠ/R for short) is a system of dependent types where
types are identified modulo the β-reduction of λ-calculus and rewriting rules given by the user
to define not only functions but also types.

Cousineau and Dowek [3] showed that λΠ/R is well-suited to encode a whole class of rich
logics: Functional Pure Type System (PTS) [2]. To do so, they use a symbol Univs for each
sort s, which contains the codes of elements of this sort and the associated decoder Ts. Then
code and prod reflect the PTS axioms and rules, respectively. For the simply typed λ-calculus,
which is the PTS with S = {∗,�}, A = {(∗,�)} and R = {(∗, ∗, ∗)}, the encoding is:

symbol Univ� : TYPE. symbol T� : Univ� ⇒ TYPE. symbol code∗� : Univ�.
symbol Univ∗ : TYPE. symbol T∗ : Univ∗ ⇒ TYPE. T� code∗� −→ Univ∗.
symbol prod∗∗∗ : (A : Univ∗) ⇒ (T∗ A ⇒ Univ∗) ⇒ Univ∗.
T∗ (prod∗∗∗ A B) −→ (x : T∗ A) ⇒ T∗ (B x).

In their encoding, every sort has its own symbol, and every rule has its associated product
symbol. However, having an infinite number of symbols and rules is not well-suited for practical
implementations. Hence, to encode PTS with an infinite number of sorts, Assaf suggested to
have a type Sort for sorts and a single symbol for products [1]. For Full Pure Type Systems1

this extension is quite direct: Univ, T, code and prod are now symbols in the syntax and the
meta-arguments of type Sort are now real arguments in the syntax. The peculiarity of each
PTS is reflected in the encoding of Sort and of the functions axiom and rule.

Let us suppose that all sorts are of the form Set` with ` ∈ L called a level 2. It is common to
enrich PTS with Universe Polymorphism [4], i.e. add the possibility for the user to quantify over
universe levels, introducing ∀`,Set` among the terms. Indeed, just like we use polymorphism
to avoid declaring a type of lists for each type of elements, we do not want to declare a new
type for each level. Hence, we want to declare List in ∀`, (A : Set`)→ Set`.

To assign a type to ∀`,Set`, a new sort Setω is introduced, which is not typable, is the type
of no sort and over which one cannot quantify. This sort is for internal purposes only, it is not
in the syntax of the system we are encoding (even if it is in the syntax of the encoded version
of the system). In addition to this new sort, we add to the encoding a new symbol ∀L which
reprents this universal quantification.

symbol setOmega : Sort. symbol set : L ⇒ Sort.
symbol ∀L : (f : (L⇒Sort)) ⇒ ((l:L) ⇒ Univ (f l)) ⇒ Univ setOmega.
T _ (∀L f t) −→ (l : L) ⇒ T (f l) (t l).

For instance, the encoding of ∀`,Set` is ∀L (λ l, axiom (set l)) (λ l, code (set l)).
And its decoding (when applying T setOmega) is, as expected, (l:L) -> Univ (set l).

Definition 1 (Translation). Given a well-typed term t in a Universe Polymorphic Full Pure
Type System, we translate it by: |x|=x |Set`|=code ‖Set`‖; ‖Setω‖=setOmega;

1A PTS is called full if axioms and rules are total functions, respectively from S and S × S to S. This
definition is more restrictive than the one given in [5], where axioms are not enforced to be total.

2We could also, without difficulty, consider several hierarchies sharing the same levels, like Set` and Prop`.

Universe Polymorphism Expressed as a Rewriting System Guillaume Genestier

‖Set`‖=set |`|L, if ` 6= ω; |(x : A)→ B|=prod ‖s‖ ‖s′‖ |A| (λx : T ‖s‖ |A|.|B|);∣∣λxA.t
∣∣=λ(x : T ‖s‖ |A|).|t|; |∀`, A|=∀L (λ` : L. ‖s‖) (λ` : L. |A|).

Each time it is used, s is the sort of A and s′ the one of B.

It can be noted that the translation |.|L of levels is not given yet. Indeed, with universe
polymorphism, universe levels are open terms, hence, convertibility between universe levels is
now an issue. Fortunately, it is the last one, since once this issue is overcomed, the encoding
has one of the expected properties: we check at least as much as in the original system.

Theorem 2 (Correctness). If the translation function is such that equality of levels implies
convertibility of their translations, if Γ `P t : A, in a Universe Polymorphic Full Pure Type
System P , then |Γ| `λΠ/P |t| : T ‖s‖ |A|, where s is the sort of A.

Of course, collapsing all levels satisfies the first hypothesis of the theorem. However it is not
satisfactory, since it comes down to do an encoding in the inconsistent PTS with only one sort.

We present a correct and complete rewriting system modulo associativity and commutativity
(AC), to decide level equality for the PTS where levels are natural numbers and axioms and
rules are respectively the functions successor and max 3 4. The whole encoding, written in
Dedukti, can be found in github.com/Deducteam/Agda2Dedukti, in the files theory/Agda.dk
and theory/univ.dk.

More formally, given the grammar t, u ::= x ∈ X | 0 | s t | max t u, every term t in
this grammar has a unique normal form denoted t↓, such that t↓ ≡AC u↓ if and only if for all
σ : X → N, JtKσ = JuKσ, where the interpretation of 0, s and max are the expected ones.

We must note that having a confluent system is not an issue here, since we desire the unique
normal form property only for some specific terms. We obtain this thanks to the guarantee
that all variables are of type L.

With our system a normal form is either a variable, or of the form Max i {jk + xk}k with
x1, x2, . . . distinct variables, and i, j1, j2, . . . ground natural numbers such that for all k, i > jk.
It must be noted, that we do not have + in our original grammar, however encoding sn(x) as
n + x avoids to duplicate infinitely rewrite rules, depending on the number of s applied. The
first argument is counting iterations, it is why it is restricted to be a ground natural number.

So that they are not confused with levels, a separate type N of ground natural numbers
is introduced5. To encode sets, we use symbols modulo AC, since a set is either empty, a
singleton of the form {i+ x}, or the union of two sets. The only non-left-linear rule of the
encoding eliminates redundancies, ensuring that all variables in the normal forms are distinct.

symbol ∅ : LSet. infix ⊕ : N⇒L⇒LSet. infix ac ∪ : LSet⇒LSet⇒LSet.
x ∪ ∅ −→ x. (i ⊕ l) ∪ (j ⊕ l) −→ maxN i j ⊕ l.

The rule stating that i+max(t, u) = max(i+ t, i+u) must not break the ordering invariant.
Hence it has to update the natural number at the head of Max : N ⇒ LSet ⇒ L 6.

Max i (j ⊕ Max k l) −→ Max (maxN i (j +N k)) (mapPlus j l).
Max i ((j ⊕ Max k l) ∪ tl) −→ Max (maxN i (j +N k)) (mapPlus j l ∪ tl).

We can now reflect the syntax we are interested in, using Max.

0 −→ Max 0N ∅. s x −→ Max 1N (1N ⊕ x).
max x y −→ Max 0N ((0N ⊕ x) ∪ (0N ⊕ y)).

3It is the level hierarchy behind the proof-assistant Agda, which has two families of sorts Prop` and Set`.
4The impredicative version, behind Coq and Lean, can also be encoded using a similar technique.
5 Symbols of type N are in red and indexed with N.
6 Rules defining mapPlus of type N ⇒ LSet ⇒ LSet can easily be inferred and is not detailed.

2

Universe Polymorphism Expressed as a Rewriting System Guillaume Genestier

References
[1] A. Assaf. A Framework for Defining Computational Higher-Order Logics. PhD thesis, École

polytechnique, 2015.
[2] H. Barendregt. Lambda calculi with types. In Handbook of logic in computer science. Volume 2.

Background: computational structures, p. 117–309. Oxford University Press, 1992.
[3] D. Cousineau and G. Dowek. Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo.

TLCA, LNCS 4583:102-117, 2007.
[4] R. Harper and R. Pollack. Type Checking with Universes. TCS 89:107-136, 1991.
[5] L. van Benthem Jutting, J. McKinna and R. Pollack. Checking Algorithms for Pure Type Systems.

Types, LNCS 806:19-61, 1993.

3

Towards a coinductive mechanisation of Scilla in Agda

Radu A. Ometita

Alexandru Ioan Cuza University, Iasi, Romania
radu.ometita@info.uaic.ro

Introduction. In this paper, we are using the Agda programming language to extend the
formalisation of the Scilla smart contract language, introduced in [7].

Smart contracts are self-executing programs with the terms of the agreement between parties
written in code. They run on top of blockchains which are immutable ledgers of transactions.
The immutability of blockchains makes patching smart contracts impossible, which in turn
makes the static verification of smart contracts very desirable.

Scilla structurally separates contract execution and message passing. Every computation
is a standalone atomic transition. Transitions are as expressive as a polymorphic lambda
calculus (System F), with an added guarantee that all transitions terminate by excluding general
recursion from the language. Messages can only be sent at the end of transitions, establishing
clear boundaries between contract execution and communication1.

While transitions themselves always terminate, there is the possibility of having non-terminating
behaviour by recursively invoking transitions. Our contribution is in this area, the specification
and verification of a possibly infinite trace produced by a finitely branching transition system.

When introducing infinite traces in the formalisation, we need to be able to reason about
infinite data and work with possibly infinite proof objects. Agda models infinite proof objects as
coinductive data (using copatterns) and all corecursive calls need to satisfy Agda’s productivity
checker.

Productivity has previously been guaranteed in Coq and Agda by allowing only terms that
respect specific syntactic rules (called syntactic guardedness [6]). The syntactic “guardedness”
rule states that a data constructor must guard all corecursive calls. Such syntactic checking
cannot, however, look within function application (or composition). As a consequence, this
makes proofs that mix induction and coinduction challenging to formulate.

Recently a different approach in working with both productivity and termination has been
implemented in Agda, using sized types [4, 3]. This approach uses the type system to guaran-
tee productivity (in the case of coinductive definitions) and termination (in case of inductive
definitions).

Using the type system for tracking this information means that functions are no longer
opaque. We can see how they affect productivity using the type system. Since Agda uses the
same mechanism for tracking termination as it does for tracking productivity, we can combine
induction and coinduction in a more principled way2.

The support for sized types makes Agda a primary candidate for our implementation, and
the reason it was chosen over Coq. Initial review of the expressivity of sized types has shown
its advantages over the syntactic approaches. When mixing induction and coinduction, if the
corecursive call is nested within a function, the compiler will not be able to guarantee that the
corecursive call is syntactically guarded [5].

Instead of equality, for infinite data, we define a strong bisimilarity relation. Cubical Agda
provides further support for working with infinite relations by identifying them with proposi-

1Due to the limited amount of space available, some more details about Scilla will be in the presentation.
2I will show an example during the presentation.

Towards a coinductive mechanisation of Scilla in Agda Radu Ometita

tional equality. However, we did not investigate Cubical Agda, as there is no information on
the way it interacts with the sized types extension.

Contribution. The mechanisation from [7] uses finite traces for the transition system, and
it generates the traces using finite schedules (a list of blockchain states and messages).

The output messages from the transitions are always assumed not to affect the state, except
for transferring funds from the contract to users, preventing scenarios where contracts can
recursively call themselves (which would be possible if output messages could call a contract
transition).

Another limitation, probably a consequence of the previous ones is that we cannot model
the interaction between multiple contracts. This is not a limitation of the finite definition of
traces; however, a coinductive definition may make reasoning about such interactions more
elegant than an inductive one.

The finite representation of traces is sufficient for verifying safety properties of the crowd-
funding campaign example from [7]. However, there are many instances of contracts where the
interaction with the outside world may lead to possibly infinite traces. Any contract that runs
forever should be interested also, in the verification of liveness properties (ex: exchanges and
wallets).

The first step we took is to change the finite traces from [7] into infinite traces and finish
proving the induction principle that [7] uses to verify state invariants for contracts. At this
point, there are still some proofs that we need to complete. However, all of these proofs use
induction as they are only safety properties of the contract, so we are confident this is not a
critical issue.

The difficulties we encountered thus far are related to the way Agda’s design patterns relate
to coinductive definitions. Understanding the way type inference works for mutual inductive
and coinductive definitions, and applying them lead us to concise and simple code, even in the
presence of infinite data.

Another hurdle we encountered was the lack of up-to-date information on Agda’s sized types
support. The size-types extension does not yet have wide adoption, and there are a couple of
different ways sized types are used in different sources ([1] vs [2]), leading to contrasting results.
Using them as in [1] made our proof of the inductive principle straight-forward.3.

The original mechanisation is done in Coq, using the syntactic sugar introduced by the
‘ssreflect’ extension. The syntactic extension makes the code difficult to read for the uninitiated.
However, we kept a similar structure and formulated our properties very close to [7].

This is a work in progress, and the presentation will include the current status of the
implementation, focused on our way of addressing the above challenges.

Further work The first step we want to take is to improve our transition code by using the
recently published [8] big-step semantics. We represent transitions using Agda code written by
hand, similarly to the original paper. However, we would like to use Agda to implement the
recently specified monadic big-step semantics from [7].

Next, we will update the temporal properties defined in [7] to include potentially infinite
traces and use these new definitions in the rest of the development.

A further step will be to develop the initial automata model adding the possibility of in-
teraction between contracts through the sending of messages. Interacting contracts can create
interesting infinite traces whose properties, e.g. liveness are to be analysed.

3Due to the limited amount of space available, I will only show some examples in the presentation.

2

Towards a coinductive mechanisation of Scilla in Agda Radu Ometita

References

[1] Andreas Abel. Equational reasoning about formal languages in coalgebraic style. http://www.cse.
chalmers.se/~abela/jlamp17.pdf. Accessed: 2020-02-12.

[2] Andreas Abel. Sized types in agda. http://www.cse.chalmers.se/~abela/talkAIM2008Sendai.

pdf. Accessed: 2020-02-12.

[3] Andreas Abel. Miniagda: Integrating sized and dependent types. In Ekaterina Komendantskaya,
Ana Bove, and Milad Niqui, editors, Partiality and Recursion in Interactive Theorem Provers,
PAR@ITP 2010, Edinburgh, UK, July 15, 2010, volume 5 of EPiC Series, pages 18–32. EasyChair,
2010.

[4] Andreas Abel and Brigitte Pientka. Well-founded recursion with copatterns and sized types. J.
Funct. Program., 26:e2, 2016.

[5] Yves Bertot. Filters on coinductive streams, an application to eratosthenes’ sieve. In Pawel Urzy-
czyn, editor, Typed Lambda Calculi and Applications, 7th International Conference, TLCA 2005,
Nara, Japan, April 21-23, 2005, Proceedings, volume 3461 of Lecture Notes in Computer Science,
pages 102–115. Springer, 2005.

[6] Thierry Coquand. Infinite objects in type theory. In Henk Barendregt and Tobias Nipkow, editors,
Types for Proofs and Programs, International Workshop TYPES’93, Nijmegen, The Netherlands,
May 24-28, 1993, Selected Papers, volume 806 of Lecture Notes in Computer Science, pages 62–78.
Springer, 1993.

[7] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. Scilla: a smart contract intermediate-level language.
CoRR, abs/1801.00687, 2018.

[8] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit Kumar, Anton Trunov, and Ken
Chan Guan Hao. Safer smart contract programming with scilla. PACMPL, 3(OOPSLA):185:1–
185:30, 2019.

3

4 Proof assistants and technology (WG2)

50

PRONOM: a theorem prover and countermodel generator
for non-normal modal logics∗

Tiziano Dalmonte1, Sara Negri2, Nicola Olivetti1, and Gian Luca Pozzato3

1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{tiziano.dalmonte,nicola.olivetti}@lis-lab.fr

2 Dipartimento di Matematica, Universitá di Genova, Italy sara.negri@unige.it
3 Dipartimento di Informatica, Universitá di Torino, Turin, Italy gianluca.pozzato@unito.it

Abstract

We describe PRONOM, a theorem prover and countermodel generator for non-normal
modal logics recently introduced. PRONOM implements some labelled sequent calculi for
the basic system E and its extensions with axioms M, N, and C based on bi-neighbourhood
semantics. The performances of PRONOM, which is implemented in Prolog, are promising.

1 Introduction
Non-Normal Modal Logics (NNML for short) have been studied since the seminal works by
C.I. Lewis, Scott, Lemmon, and Chellas (for an introduction see [1]) in the 1960s. They are
a generalization of ordinary modal logics that do not satisfy some axioms or rules of minimal
normal modal logic K. They have gained interest in several areas such as epistemic and deontic
reasoning, reasoning about games, and reasoning about “truth in most of the cases”. Non-normal
modal logics enjoy a simple semantic characterization in terms of Neighbourhood models: these
are possible world models where each world is equipped with a set of neighbourhoods, each one
being itself a set of worlds; the basic stipulation is that a modal formula 2A is true at a world
w if the set of worlds which make A true belongs to the neighbourhoods of w. A family of logics
is obtained by imposing further closure conditions on the set of neighbourhoods.

Here we describe PRONOM, a theorem PROver for NOnnormal Modal logics. PRONOM
implements in Prolog the labelled sequent calculi presented in [3], based on bi-neighbourhood
semantics where each world has associated a set of pairs of neighbourhoods, the idea being that
the two components of a pair provide independently a positive and negative support for a modal
formula. The calculi are modular and provide a decision procedure for the respective logic.
Because of the invertibility of the rules, a finite countermodel in the bi-neighbourhood semantics
can be directly extracted from a failed derivation. The implementation closely corresponds to
the calculi: each rule is encoded by a Prolog clause, and this correspondence ensures in principle
both the soundness and completeness of the theorem prover. PRONOM provides both proof
search and countermodel generation: it searches for a derivation of an input formula, but in
case of failure, it generates a countermodel in the bi-neighbourhood semantics.

2 Non-Normal Modal Logics and Their Sequent Calculi
We present the classical cube of NNMLs, both axiomatically and semantically. Let Atm be
a countable set of propositional variables. The language L contains formulas given by the
following grammar: A ::= p | ⊥ | > | A ∨ A | A ∧ A | A → A | 2A, where p ∈ Atm. The

∗Supported by the ANR project TICAMORE ANR-16-CE91-0002-01, the Academy of Finland project
1308664 and INdAM project GNCS 2019 “METALLIC #2”.

PRONOM: a theorem prover and countermodel generator for NNML Dalmonte, Negri, Olivetti and Pozzato

minimal logic E in the language L is defined by adding to classical propositional logic the rule
of inference RE A→B B→A

2A→2B , and can be extended further by choosing any combination of
axioms M, C, and N on the left, thus producing the eight distinct logics on the right.

M I 2(A ∧B)→ 2A

C I 2A ∧2B → 2(A ∧B)

N I 2>
E

EM

EC EN

EMC EMN

ECN

EMCN (K)

We consider a bi-neighbourhood semantics for NNMLs [3]. A model is a tupleM = 〈W,Nb,V〉,
where W is a non-empty set of worlds (states), V is a valuation function, and Nb is a bi-
neighbourhood function W −→ P(P(W) × P(W)), where P denotes the power set. We say
that M is a M-model if (α, β) ∈ Nb(w) implies β = ∅, it is a N-model if for all w ∈ W there
is α ⊆ W such that (α, ∅) ∈ Nb(w), and it is a C-model if (α1, β1), (α2, β2) ∈ Nb(w) implies
(α1 ∩ α2, β1 ∪ β2) ∈ Nb(w). The forcing relation for boxed formulas is w
 2A iff there is
(α, β) ∈ Nb(w) s.t. α ⊆ [A] and β ⊆ [¬A], where [A] is, as usual, the truth set of A in W
obtained by the valuation V.

Let us now recall the labelled calculi for NNMLs based on the bi-neighbourhood semantics,
whose language LLS extends L with a set WL = {x, y, z, ...} of world labels, and a set NL =
{a, b, c, ...} of neighbourhood labels. We define positive neighbourhood terms, written [a1, ..., an],
as finite multisets of neighbourhood labels, with the unary multiset [a] representing an atomic
term. Moreover, if t is a positive term, then t is a negative term. Negative terms t cannot
be proper subterms and cannot be negated. The term τ and its negative counterpart τ are
neighbourhood constants. Intuitively, positive (resp. negative) terms represent the intersection
(resp. the union) of their constituents, whereas t and t are the two members of a pair of
neighbourhoods in bi-neighbourhood models. The formulas of LLS are of the form: φ ::= x :
A | t
∀ A | t
∃ A | x ∈ t | t ∈ N (x). Sequents are pairs Γ ⇒ ∆ of multisets of formulas of
LLS . The fully modular calculi LSE∗ are defined by the rules in Figure 1, Section 3 in [3].

3 The Theorem Prover PRONOM

PRONOM [2] is a Prolog implementation of the above calculi. It comprises a set of clauses,
each one of them implementing a sequent rule or an axiom of LSE and its extensions. The
proof search is provided for free by the mere depth-first search mechanism of Prolog, without
any additional ad hoc mechanism. Given a non-normal modal formula F represented by the
Prolog term f, PRONOM executes the main predicate of the prover, called prove, whose only
two clauses implement the functioning of PRONOM: the first clause checks whether F is valid
and, in case of a failure, the second one computes a model falsifying F . Each clause of the
program implements an axiom or rule of the sequent calculi LSE and extensions. To search
for a derivation of a sequent Γ ⇒ ∆, PRONOM proceeds as follows. First of all, if Γ ⇒ ∆
is an instance of an axiom, the goal will succeed immediately, otherwise the first applicable
rule will be chosen, and PRONOM will be recursively invoked on the premises of such a rule.
PRONOM proceeds in a similar way for all the rules. The ordering of the clauses is such that
the application of the branching rules is postponed as much as possible.

As far as we know, PRONOM is the first theorem prover that provides both proof search
and countermodel generation for the whole cube of non-normal modal logics. Although there
are no benchmarks, its performance seems promising. The program PRONOM, as well as all
the Prolog source files, including those used for the performance evaluation, are available for
free usage and download at http://193.51.60.97:8000/pronom/.

2

PRONOM: a theorem prover and countermodel generator for NNML Dalmonte, Negri, Olivetti and Pozzato

References
[1] Brian F. Chellas. Modal Logic. Cambridge University Press, 1980.
[2] Tiziano Dalmonte, Sara Negri, Nicola Olivetti, and Gian Luca Pozzato. PRONOM: proof-search

and countermodel generation for non-normal modal logics. In Mario Alviano, Gianluigi Greco, and
Francesco Scarcello, editors, AI*IA 2019 - Advances in Artificial Intelligence - XVIIIth International
Conference of the Italian Association for Artificial Intelligence, Rende, Italy, November 19-22, 2019,
Proceedings, volume 11946 of Lecture Notes in Computer Science, pages 165–179. Springer, 2019.

[3] Tiziano Dalmonte, Nicola Olivetti, and Sara Negri. Non-normal modal logics: Bi-neighbourhood
semantics and its labelled calculi. In Guram Bezhanishvili, Giovanna D’Agostino, George Metcalfe,
and Thomas Studer, editors, Advances in Modal Logic 12, proceedings of the 12th conference on
Advances in Modal Logic, held in Bern, Switzerland, August 27-31, 2018, pages 159–178. College
Publications, 2018.

[4] Sara Negri. Proof theory for non-normal modal logics: The neighbourhood formalism and basic
results. IfCoLog J. Log. Appl, 4(4):1241–1286, 2017.

3

On equality checking for general type theories:
Implementation in Andromeda 2∗

Andrej Bauer, Philipp G. Haselwarter, and Anja Petković

University of Ljubljana, Ljubljana, Slovenia

Equality checking algorithms are essential components of proof assistants based on type
theories [Coq, Agd, dMKA+15, SBF+19, GCST19, AOV17]. They free the user from the
burden of proving equalities, and provide computation-by-normalization engines. The type
theories found in the most popular type-theoretic proof assistants are carefully designed to
have decidable equality. Some systems [Ded, CA16] also allow user extensions to the built-in
equality checkers, possibly sacrificing their completeness.

The situation is worse in a proof assistant that supports arbitrary user-definable theories,
such as Andromeda 2 [And, BGH+18], where in general no equality checking algorithm may be
available. Short of implementing exhaustive proof search, the construction of equality proofs
must be delegated to the user (and still checked by the trusted nucleus). While some may
appreciate the opportunity to tinker with equality checking procedures, they are surely out-
numbered by those who prefer good support that automates equality checking with minimal
effort, at least for well-behaved type theories that one encounters in practice.

We have designed and implemented in Andromeda 2 an extensible equality checking algo-
rithm that supports user-defined computation rules (β-rules) and extensionality rules (inter-
derivable with η-rules). The user needs only to provide the equality rules they wish to use,
after which the algorithm automatically classifies them either as computation or extensionality
rules (and rejects those that are of neither kind), and devises an appropriate notion of weak
head-normal form. In the case of well-behaved type theories such as the simply typed lambda
calculus or Martin-Löf type theory with η for dependent products, the algorithm behaves like
well-known standard equality checkers. In general, it may be incomplete or non-terminating,
but it can never be the source of unsoundness because it resides outside of the trusted nucleus.

Our algorithm is a variant of a type-directed equality checking algorithm [SH06, AS12],
described in more detail below. It is implemented in around 1300 lines of OCaml code. The
algorithm consults the nucleus to build a trusted certificate of every equality it proves and
every term normalization it performs. It is easy to experiment with different sets of equality
rules, and dynamically switch between them depending on the situation at hand. Our initial
experiments are encouraging, although many opportunities for optimization and improvements
await.

Type-directed equality checking. The kind of equality checking algorithm that we employ
is comprised of several mutually recursive subroutines:

1. Weak head-normalize a type A: the user-provided type computation rules are applied to
A to give a sequence of equalities A ≡ A1 ≡ · · · ≡ An, until no more rules apply. Then
the heads of An are normalized recursively (see below) to obtain An ≡ A′

n, after which
the (certified) equality A ≡ A′

n is output.
2. Weak head-normalize a term t : A: analogously to normalization of types, the user-

provided term computation rules are applied to t until no more rules apply.

∗This material is based upon work supported by the Air Force Office of Scientific Research under award
number FA9550-17-1-0326.

On equality checking for general type theories Bauer, Haselwarter and Petković

3. Check equality of types A ≡ B: the types A and B are normalized and their normal forms
are compared.

4. Check equality of normalized types A ≡ B: normalized types are compared structurally,
i.e., by an application of a suitable congruence rule. Their subexpressions are compared
recursively. For example, to prove Π(x :C)D ≡ Π(x :C′)D

′, we recursively prove C ≡ C ′

and x :C ` D ≡ D′.
5. Check equality of terms s ≡ t : A:

(a) type-directed phase: normalize the type A and based on its normal form apply user-
provided extensionality rules, if any, to reduce the equality to subsidiary equalities,

(b) normalization phase: if no extensionality rules apply, normalize s and t and compare
their normal forms.

6. Check equality of normalized terms s ≡ t : A: normalized terms are compared structurally,
analogously to comparison of normalized types.

One needs to choose the notions of “computation rule”, “extensionality rule” and “normal form”
wisely in order to guarantee completeness. In particular, in the type-directed phase the type
at which the comparisons are carried out should decrease with respect to a well-founded notion
of size, while normalization should be confluent and terminating. These concerns are external
to the system, and so the user is allowed to install rules without providing any guarantees of
completeness or termination.

Computation and extensionality rules. Term computation rules, type computation rules,
and extensionality rules respectively have the forms

P1 · · · Pn

` u ≡ v :A

P1 · · · Pn

` A ≡ B
P1 · · · Pn ` x :A ` y :A Q1 · · · Qm

` x ≡ y :A

In a term computation rule, P1, . . . , Pn are object premises that introduce term and type meta-
variables, while u must be a term symbol applied to subexpressions in which all the meta-
variables appear. An extensionality rule, as above, has object premises P1, . . . , Pn and sub-
sidiary equality premises Q1, . . . , Qm. We require that every meta-variable introduced by the
premises appears in A. To tell whether such a rule applies to s ≡ t : B, we pattern match B
against A, and proceed to work on the instantiated equality subgoals Q1, . . . , Qm.

Heads and normal forms. For the algorithm to work correctly, it needs a notion of normal
forms that matches the equality rules. We use weak head-normal forms: an expression is
said to be in normal form if no computation rule applies to it, and its heads are in normal
form. Furthermore, when normal forms are compared structurally, their heads are compared
structurally in a recursive fashion, while the remaining arguments are compared as ordinary
(non-normal) expressions.

The question arises, how to figure out which arguments of a term or a type symbol are the
heads. For instance, how can we tell that the third argument of fst above is a head, while
pair has no heads? In our implementation the user may specify the heads directly, or let the
algorithm read the heads off the computation rules automatically, as follows: if s(u1, . . . , un)
appears as a left-hand side of a computation rule, then the heads of s are those ui’s that are
not meta-variables, i.e., matching against them does not automatically succeed, and so further
normalization is required. By varying the notion of heads we may control how expressions are
normalized. For example, strong normal forms are just weak head-normal forms in which all
arguments are declared to be heads.

2

On equality checking for general type theories Bauer, Haselwarter and Petković

References
[Agd] The Agda proof assistant. https://wiki.portal.chalmers.se/agda/.
[And] The Andromeda proof assistant. http://www.andromeda-prover.org/.
[AOV17] Andreas Abel, Joakim Öhman, and Andrea Vezzosi. Decidability of conversion for type

theory in type theory. Proceedings of the ACM on Programming Languages, 2(POPL),
December 2017.

[AS12] Andreas Abel and Gabriel Scherer. On Irrelevance and Algorithmic Equality in Predicative
Type Theory. Logical Methods in Computer Science, Volume 8, Issue 1, 2012.

[BGH+18] Andrej Bauer, Gaëtan Gilbert, Philipp G. Haselwarter, Matija Pretnar, and Christo-
pher A. Stone. Design and implementation of the Andromeda proof assistant. In 22nd
International Conference on Types for Proofs and Programs (TYPES 2016), volume 97 of
LIPIcs, pages 5:1–5:31. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

[CA16] Jesper Cockx and Andreas Abel. Sprinkles of extensionality for your vanilla type theory. In
22nd International Conference on Types for Proofs and Programs TYPES 2016, University
of Novi Sad, 2016.

[Coq] The Coq proof assistant. https://coq.inria.fr/.
[Ded] The Dedukti logical framework. https://deducteam.github.io.
[dMKA+15] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von

Raumer. The Lean Theorem Prover (System Description). In 25th International Confer-
ence on Automated Deduction (CADE 25), August 2015.

[GCST19] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional
Proof-Irrelevance without K. Proceedings of the ACM on Programming Languages,
3(POPL), January 2019.

[SBF+19] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winter-
halter. Coq Coq correct! Verification of Type Checking and Erasure for Coq, in Coq.
Proceedings of the ACM on Programming Languages, 4(POPL), December 2019.

[SH06] Christopher A. Stone and Robert Harper. Extensional equivalence and singleton types.
ACM Transactions on Computational Logic, 7(4):676–722, 2006.

3

Proof search for full intuitionistic propositional logic

through a coinductive approach for polarized logic

José Esṕırito Santo1, Ralph Matthes2, and Lúıs Pinto1

1 Centro de Matemática, Universidade do Minho, Portugal
2 Institut de Recherche en Informatique de Toulouse (IRIT), CNRS and Univ. of Toulouse, France

We address proof search in full intuitionistic propositional logic, which besides implication
also includes at least binary conjunction and disjunction. While the former is regarded as a
minor complication which only asks for little extra effort when doing metatheoretic studies,
the latter connective presents challenges. It is well-known that in presence of disjunction, also
permutative/commuting conversions have to be taken into account to obtain the subformula
property. Focused, cut-free sequent calculi provide an appropriate formalization of proofs where
such challenges are met. We adopt a complete variant of LJT [6], henceforth called IPL, with
some extra simplifications related to eta-expansion, also seen in the recent work by Ferrari and
Fiorentini [5, Thm. 2]—but there in the format of natural deduction and without proof terms.

The authors developed for the implicational fragment a coinductive approach to proof search,
with which new decision procedures are obtained in recently published work [3]. Our goal is
to extend the approach to full intuitionistic logic. However, instead of trying the approach
on IPL, we apply it to a more general focused system, into which IPL (and presumably other
focused systems) can be embedded: it is a minor variant of cut-free λ±G, a sequent calculus
developed by the first author [1] for full polarized intuitionistic propositional logic. We will call
this minor variant PIPL. The embedding of IPL into PIPL is reminiscent of Girard’s embedding
of intuitionistic logic into linear logic—but here the target logic is polarized and not linear. The
main point, however, is that the image of the embedding enjoys the conservativity property that
allows the study of proof search in IPL via PIPL.

The guiding idea of our coinductive approach to proof search is to represent the entire
search space of proofs for a given sequent as a single expression. This requires extending the
concept of proof expression in two directions: choice points are added to represent the possible
application of different proof rules or the different applications of the same proof rule with
varying parameters; and, since naive proof search can run into cycles, we adopt a “coinductive
representation of proof candidates”, that is, we replace the inductive interpretation of proof
expressions by a coinductive one, so that they may represent non-wellfounded trees of locally
correct applications of proof rules. These expressions are called “forests”, and they serve for a
precise mathematical specification of our problems of proof search. The algorithmic counterpart
that has to be validated against those specifications consists of “finitary forests” that obey an
inductive grammar but feature fixed-point expressions that bind meta-variables whose types are
sequents (thus finitary forests are not given as a subset of the forests, but they arise syntactically
from an inductive definition that also involves explicit fixed points).

In the logic of PIPL, atomic formulas and connectives have one of two polarities, positive or
negative. The polarity of a formula is that of its outermost formula constructor. There exist
two special formula constructors to invert the polarity (the polarity shifts). The polarity of a
connective determines on which side of the sequents the connective is to be focused and inverted.
System PIPL is a reworking of Simmons’ focused sequent calculus [7] with five categories of
sequents, two for the focusing phase (on the left or on the right), two for the inversion phase
(idem), and one category of stable sequents Γ ` A—those which require a decision from the
“user” of the proof system in order to allow proof search to proceed.

Proof search for full intuitionistic propositional logic through a coinductive approach for polarized logic

To apply our methodology of coinductive proof search to PIPL, we first define the “forests”
of PIPL: based on the five categories of sequents, we have five categories of PIPL proof expres-
sions, and these notions are extended with choice points and read coinductively, as explained
before. We call forests those raw coinductive expressions with choice points. While the overall
definition is coinductive, only infinite cycling through the category of stable sequents is autho-
rized, and the other simultaneous definitions are by themselves inductive (this can be made
precise with stacked least and greatest fixed points over suitable monotone set operators, or,
more suggestively, by imposing the parity condition on infinite unfoldings of the non-terminals
representing the five categories, where the one corresponding to stable sequents gets priority 2
and the others priority 1). The rationale for this restriction w. r. t. a fully coinductive interpre-
tation is that (1) the other forests would never be typable by sequents, which is why we can
safely omit them, and (2) that our corecursive proof constructions when reasoning on forests
need to be productive, which would not always be the case for the unrestricted notions.

Each sequent σ can be assigned its search space S(σ) which is a forest of the appropriate
category. “Members” of forests in general can be defined inductively, and the definition of
S(σ) is adequate in the sense that precisely the inhabitants of σ are the members of the forest
S(σ). In our previous work [2, 3], we also considered coinductive members, in order to address
questions like “Can proof search for a sequent σ run into loops?”, but this is not yet developed
for PIPL.

The “finitary forests” of PIPL also come in five categories, and fixed-point variables are
only introduced for stable sequents Γ ` R, where R is a “right formula” [1], i. e., positive or a
negative atom. There are syntax elements for all proof constructors in the finitary forests, but
for stable sequents of form σ := Γ ` R there can also be just a fixed-point variable X of type
σ or an expression of the form gfpXσ.E, with E a representation of all possible applications of
the return or coreturn construction to get a (stable) expression, where the former corresponds
to pursuing proof search with focus on a positive formula on the right-hand side and the latter
on continuing with focus on a negative formula on the left-hand side. The methodology of
our previous publications is applied analogously to specify recursively the outcome of a finitary
representation F(σ) of the search space of each sequent σ, by help of a finite list of typed fixed-
point variables as an auxiliary parameter. Most notably, for the rules that invert a positive
formula in the left-hand side of a sequent and introduce new variables into context Γ, the type
of the last fixed-point variable in the list is adapted accordingly. The proof of Lemma 52 in our
arXiv paper [2] can be adapted very easily to show that F(σ) is indeed a finitary forest: the
main task is to show that the recursion terminates (and this exploits the subformula property).

As in our previous work, a fixed-point variable X can occur in the finitary forest with a
different type than at the binding occurrence right after gfp . The semantic interpretation of X
needs to cope with varying types and this is by way of a “decontraction” operation as in our
previous work: if in a context Γ, a type A is given to more than one variable, say to x and y,
one can “expand” a forest T built for x only by adding an alternative with y in place of x, and
this independently for all occurrences of x in T . In general, given a forest T , its decontraction
[Γ′/Γ]T is defined when Γ′ only has more names for the same assumed formulas as Γ, and our
example could be written as [x : A, y : A/x : A]T , or even more intuitively as [(x + y)/x]T ,
suggesting a choice between x and y for every occurrence of x.

Future work concerns the treatment of proof efforts with loops, in particular decidability of
the question whether they exist, and other questions related to finiteness, including a variant
of König’s lemma that we described for the implicational fragment in very recent work [4]: the
task is to “prune” search spaces in a way that guarantees that they are infinite only if proof
search can run into an infinite loop.

2

Proof search for full intuitionistic propositional logic through a coinductive approach for polarized logic

References

[1] José Esṕırito Santo. The Polarized λ-calculus. ENTCS, vol. 332, pp. 149–168, 2017.

[2] José Esṕırito Santo, Ralph Matthes, and Lúıs Pinto. A coinductive approach to proof search through
typed lambda-calculi. https://arxiv.org/abs/1602.04382, July 2016.

[3] idem. Inhabitation in simply-typed lambda-calculus through a lambda-calculus for proof search.
Mathematical Structures in Computer Science, vol. 29, pp. 1092–1124, September 2019.

[4] idem. Decidability of several concepts of finiteness for simple types. Fundamenta Informaticae,
vol. 170, no. 1–3, pp. 111–138, October 2019.

[5] Mauro Ferrari and Camillo Fiorentini. Goal-Oriented Proof-Search in Natural Deduction for Intu-
itionistic Propositional Logic. Journal of Automated Reasoning, vol. 62, pp. 127–167, 2019.

[6] Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents comme calcul de
lambda-termes et comme calcul de stratégies gagnantes. PhD thesis, Université Paris 7, 1995.

[7] Robert J. Simmons. Structural Focalization. ACM TOCL, vol. 15, issue 3, article 21, 2014.

3

Modal Induction for Elementary Proofs
Giulio Fellin12, Sara Negri23, and Peter Schuster1

1 Università di Verona, Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona, Italy

{giulio.fellin,peter.schuster}@univr.it
2 University of Helsinki, Department of Philosophy

P.O. Box 24 (Unioninkatu 40 A), 00014 University of Helsinki, Finland
{giulio.fellin,sara.negri}@helsinki.fi

3 Università di Genova, Dipartimento di Matematica
via Dodecaneso 35, 16146 Genova, Italy

sara.negri@unige.it

As a rule of thumb, induction principles are more constructive than the corresponding
extremum principles. Characteristic examples include Aczel’s Set Induction [1, 3, 4] versus von
Neumann and Zermelo’s Axiom of Foundation, and Raoult’s Open Induction [5,8,19] as opposed
to Zorn’s Lemma. Since Peano, induction anyway is the main tool for neatly capturing the
infinite by representing potentially incomplete processes of generation. This is well reflected by
the ubiquity of inductive definitions in today’s mathematical logic and theoretical informatics,
not least in constructive set and type theories [2, 14].

While the usual formulations of induction go beyond first-order logic [9, 10], we now use
tools of modal logic [6, 17] to obtain rather first-order variants of induction. To verify the
practicability of these variants in proof practice, we return to the aforementioned examples.
Among other things, we prove with the modal companions of induction and with modal logic
in sequent-calculus style [16] that every inductive binary relation is irreflexive, and that every
meet-closed inductive predicate on a poset propagates from the irreducible elements to any
element whatsoever [20]. As a by-product, we gain insights into irreflexivity and transitivity.

Modal logic is obtained from propositional logic by adding the modal operator � to the
language of propositional logic. A Kripke model [12] is a set X together with an accessibility
relation R, i.e. a binary relation between elements of X, and a valuation val, i.e. a function
assigning one of the truth values 0 or 1 to an element x of X and an atomic formula P . The
usual notation is x
 P for val(x, P) = 1.

We read “xRy” as “y is accessible from x” and we read “x
 P ” as “x forces P ”. Valuations
are extended in a unique way to arbitrary formulae by means of inductive clauses:

x 1 ⊥
x
 A ⊃ B if and only if x
 A⇒ x
 B
x
 A ∧B if and only if x
 A and x
 B
x
 A ∨B if and only if x
 A or x
 B
x
 �A if and only if ∀y(xRy ⇒ y
 A)

We assume that x
 P is decidable for every x ∈ X and each atomic formula P , which carries
over to arbitrary formulae by the inductive clauses. With the intended applications in mind, in
place of R we use the inverse accessibility relation <, i.e. we stipulate

y < x if and only if xRy .

The pair (X,<) is then dubbed Kripke frame.

Modal Induction for Elementary Proofs Fellin and Negri and Schuster

From [15] we adopt the sequent calculus G3K for the basic modal logic K. We consider two
new rules on top of G3K (rule R�-GLI is rule R�-L of [16]):

y : �A,Γ→ ∆, y : A
NI

Γ→ ∆, y : A

y < x, y : �A,Γ→ ∆, y : A
R�-GLI

Γ→ ∆, x : �A
Both rules come with the variable condition that y does not appear in Γ,∆.

Proposition 1. Let (X,<) be a Kripke frame.

1. Rule NI is equivalent to (X,<) satisfying Noetherian Induction, viz.

∀y(∀z < y Ez ⇒ Ey)⇒ ∀y Ey
for all predicates E(x) of the elements x of X.

2. Rule R�-GLI is equivalent to (X,<) satisfying Gödel–Löb Induction, viz.

∀x(∀y < x(∀z < y Ez ⇒ Ey)⇒ ∀y < xEy)

for all predicates E(x) of the elements x of X.

This allows us to transform algebraic proofs into modal derivations as follows:

Proof pattern Let X be a set endowed with a binary relation <. Suppose that we need to
show a statement of the form ∀y E(y) by way of Noetherian Induction, or a statement of the
form ∀x∀y < xE(y) by way of Gödel–Löb Induction. We consider (X,<) as a Kripke frame,
and build a Kripke model by fixing a propositional variable P and defining the valuation

val : (x, P) 7→
{

1 if E(x)

0 otherwise

We usually introduce a pair of rules to express the definition of val. We then proceed as follows:

1. For Noetherian Induction, derive the sequent y : �P → y : P and apply rule NI to obtain
→ y : P , which is indeed equivalent to ∀y E(y);

2. For Gödel–Löb Induction, derive the sequent y < x, y : �P → y : P and apply rule R�-
GLI to obtain → x : �P , which is indeed equivalent to ∀x∀y < xE(y).

Applications With modal sequent calculi [16] we could prove, among other things, that
Gödel–Löb Induction is equivalent to Noetherian Induction plus (an appropriate “encoded”
version of) transitivity of <; that by Noetherian induction every meet-closed predicate on
a poset propagates from the irreducible elements to any element whatsoever [20]; and that
Noetherian Induction and Gödel–Löb Induction imply the irreflexitivy of < and its variant
∀y < x(y 6= x), respectively.

Future work The calculus G3K is classical, but the applications studied up to now have a
purely constructive proof in their algebraic counterpart. This makes us confident that we can
replaceG3K by an intuitionistic modal calculus, such as the one presented in [13]. Furthermore,
those applications have not yet suggested a general method to find the rules that characterize
x
 P ; whence we will next try to pin down such a general method.

Other principles related to induction are worth a closer look. Apart from the notions of
Noetherianity discussed in [10,18], there is Grzegorczyk induction [11], which is a weaker form
of induction compatible with reflexivity. Also the principles of transitivity and irreflexivity
deserve further investigation, especially in connection with cut elimination.

2

Modal Induction for Elementary Proofs Fellin and Negri and Schuster

References
[1] Peter Aczel. The type theoretic interpretation of constructive set theory. In Logic Colloquium

’77 (Proc. Conf., Wrocław, 1977), volume 96 of Stud. Logic Foundations Math., pages 55–66.
North-Holland, Amsterdam, 1978.

[2] Peter Aczel. The type theoretic interpretation of constructive set theory: inductive definitions.
In Logic, methodology and philosophy of science, VII (Salzburg, 1983), volume 114 of Stud. Logic
Found. Math., pages 17–49. North-Holland, Amsterdam, 1986.

[3] Peter Aczel and Michael Rathjen. Notes on constructive set theory. Technical report, Institut
Mittag–Leffler, 2000. Report No. 40.

[4] Peter Aczel and Michael Rathjen. Constructive set theory. Book draft, 2010. URL: https:
//www1.maths.leeds.ac.uk/~rathjen/book.pdf.

[5] Ulrich Berger. A computational interpretation of open induction. In F. Titsworth, editor, Pro-
ceedings of the Ninetenth Annual IEEE Symposium on Logic in Computer Science, pages 326–334.
IEEE Computer Society, 2004.

[6] Patrick Blackburn, Maarten Rijke, and Yde Venema. Modal Logic. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2001.

[7] George Boolos and C. Smorynski. Self-Reference and Modal Logic, volume 53. Association for
Symbolic Logic, 1988. doi:10.2307/2274450.

[8] Thierry Coquand. A note on the open induction principle. Technical report, Göteborg University,
1997. URL: www.cse.chalmers.se/~coquand/open.ps.

[9] Thierry Coquand and Henri Lombardi. A logical approach to abstract algebra. Math. Structures
Comput. Sci., 16:885–900, 2006.

[10] Laura Crosilla and Peter Schuster. Finite Methods in Mathematical Practice. In G. Link, editor,
Formalism and Beyond. On the Nature of Mathematical Discourse, volume 23 of Logos, pages
351–410. Walter de Gruyter, Boston and Berlin, 2014.

[11] Roy Dyckhoff and Sara Negri. A cut-free sequent system for grzegorczyk logic, with an application
to the gödel–mckinsey–tarski embedding. J. Logic Computation, 26:169–187, 2016.

[12] Saul A. Kripke. Semantical analysis of modal logic. I. Normal modal propositional calculi.
Z. Math. Logik Grundlagen Math., 9:67–96, 1963.

[13] Paolo Maffezioli, Alberto Naibo, and Sara Negri. The Church–Fitch knowability paradox in the
light of structural proof theory. Synthese, 190(14):2677–2716, 2013.

[14] Per Martin-Löf. Intuitionistic Type Theory, volume 1 of Studies in Proof Theory. Lecture Notes.
Bibliopolis, Naples, 1984. Notes by Giovanni Sambin.

[15] Sara Negri. Proof analysis in modal logic. J. Philos. Log., 34(5–6):507–544, 2005.
[16] Sara Negri and Jan von Plato. Proof Analysis. A Contribution to Hilbert’s Last Problem. Cam-

bridge University Press, Cambridge, 2011.
[17] Eugenio Orlandelli and Giovanna Corsi. Corso di logica modale proposizionale, volume 1169 of

Studi Superiori. Carrocci editore, 2019.
[18] Hervé Perdry and Peter Schuster. Noetherian orders. Math. Structures Comput. Sci., 21:111–124,

2011.
[19] Jean-Claude Raoult. Proving open properties by induction. Inform. Process. Lett., 29(1):19–23,

1988.
[20] Peter Schuster. Induction in algebra: a first case study. In 2012 27th Annual ACM/IEEE Sym-

posium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, pages 581–585. IEEE
Computer Society Publications, 2012. Logical Methods in Computer Science (3:20) 9 (2013).

3

5 Types for programming languages (WG3)

63

Subtype Universes

Harry Maclean and Zhaohui Luo

Royal Holloway, University of London, U.K.
harryjmaclean@gmail.com

zhaohui.luo@hotmail.co.uk

Introduction. Martin-Löf [9] introduced the concept of a universe in order to describe collec-
tions of types. The universe Type0 contains all small types, Type0 itself is contained in Type1,
and so on. This predicative hierarchy of universes is designed to provide expressive power (we
can quantify over collections of types) whilst avoiding paradoxes.

In this paper we explore a new form of universe: a collection of subtypes. For any type A
we define a universe U(A) as the collection of all subtypes of A. We work in a system UTT[C]
which is an extension of UTT [6] with coercive subtyping [8] specified by means of a set C of
coherent coercions. Our subtype universe is defined by the addition of two rules (for brevity
we use universe formulation à la Russell):

Γ ` H : Type
U -formation

Γ ` U(H) : Type

Γ ` A ≤ H : Type
U -introduction

Γ ` A : U(H)

U -formation declares that for type H, U(H) is also a type, and U -introduction says that for
any type A which is a subtype of H, A is in the universe U(H). Note that H is always
contained in U(H) and, as a degenerate case, U(H) contains only H when C is empty. We now
have a type for “all subtypes of H”, and can therefore quantify over this type. For example,
∀(X : U(H)).P (X) is the proposition that a particular property P holds for all subtypes of H.

This subtype universe neatly models bounded quantification (of the form Π(A ≤ H).P (A))
whilst avoiding the type checking issues traditionally associated with it [10]. We show that a
specific form of this construction is a logically consistent extension of UTT[C], explore applica-
tions in programming and natural language semantics, and discuss possible further work.

Application to programming. Subtype universes provide an alternative model for bounded
quantification [3]. For example, we can define a polymorphic identity function over all subtypes
of H as idH = λX.λx.x : Π(X : U(H)).X → X. In a system without subtype universes or
bounded quantification the equivalent function would be idH = λx.x : H → H. Given an object
h : H ′ where H ′ < H, the expression idH(h) is well-typed via subtype subsumption, but the
result will be an object of type H - we have lost the information that h is of type H ′, simply
by passing it through the identity function. By specifying the argument type and not relying
on subsumption, both bounded quantification and subtype universes avoid this problem.

As a more compelling example, consider a type of (non-dependent) records, representing
heterogeneous sets of labelled values. We write a record type as {x : A, y : B, ...} where x, y are
field labels and A,B are field types. We define a subtyping relation on records as follows:

Γ ` A : Type Γ ` R : RType
(x /∈ R)

Γ ` {R, x : A} ≤ R : Type

where R is the type of records and {R, x : A} denotes the extension of R by a field x of type
A, under the assumption that R does not have a field labelled x. RType is the kind of record
types, as described in [7]. We can write the type of a function that extracts the value named
“length” as

Subtype Universes Maclean and Luo

getLength : Π(R : U({length : Int})).R→ Int

where U({length : Int}) is the universe of subtypes of the record type {length : Int}. getLength
can be applied to any record which has a field labelled “length” of type Int.

Unlike bounded quantification, subtype universes can appear anywhere in a type. For
example the codomain of the function f : U(H)→ U(H)→ U(H) is a universe, and U(H)×A
is a product type containing a universe.

Application to natural language semantics. In formal semantics based on type theories
[11, 5, 4], common nouns are interpreted as types and subtype universes are useful in semantic
constructions. For example, they can be employed to model gradable adjectives (words such
as “tall”). Gradable adjectives map their arguments on to a totally ordered set of degrees, or
scale. For “tall”, this scale is height. Consider a universe T of base types containing objects
for which we can determine their height, which may contain Human : T and Building : T . We
can define the type of “tall” as tall : Π(H : T).Π(A : U(H)).(A→ Prop).

In words, “tall” is a predicate on subtypes of types in T , and U(H) is the subtype uni-
verse for H. Thus if we have a type Man < Human and an object socrates : Man then
tall(Human,Man, socrates) : Prop. An example definition is tall(H,A, x) ≡ height(x) ≥
ξ(H,A), where ξ : Π(H : T).(U(H) → N) is a function that calculates the “threshold” height
for any subtype of a type in T .

Metatheoretic correctness. We have proved that the extension of UTT[C] with the two
universe formation rules is not problematic in a simplified case of the more general system. We
pick a specific (but arbitrary) small type H and a single subtyping rule:

Γ, x : A ` P : Prop

Γ ` Σ(x : A).P ≤π1
A : Type

where π1 : Σ(x : A).P → A is the first projection for pairs. We prove that all theorems
of this simplified system (written UTTH [C]) are derivable in UTT[C] via a transformation δ,
which maps U(H) to Type0 but leaves terms otherwise unchanged. A corollary to this is that
UTTH [C] is logically consistent, as UTT[C] is a conservative extension of UTT, which is itself
a consistent system.

Recent work has extended this result to an arbitrary but coherent set of coercions obeying
a restriction that we define here informally: for any coercion c : A → B we require A : Typei,
B : Typej and i ≤ j. Care must be taken to ensure that coercions cannot themselves mention
subtype universes, as otherwise we can derive potentially paradoxical judgements. For example,
from the coercion c : U(H)→ H we can derive a judgement Γ ` U(H) : U(H). The relationship
between subtype universes and the existing predicative universe hierarchy is ambiguous and in
need of further investigation.

Conclusion. Subtype universes provide a powerful mechanism for quantifying over collec-
tions of subtypes without the undecidability issues of bounded quantification. We give several
example applications in programming and natural language semantics; there are surely others.

Subtype universes bear similarities to Cardelli’s power type [2] Power(A), a type containing
all subtypes of A. Cardelli’s formulation uses structural subtyping and a system with the
logically inconsistent Type : Type, whereas our system is built on the logically consistent UTT.
Aspinall’s λPower [1] is a predicative and simplified alternative to Cardelli’s system, but it has
been difficult to prove some of its metatheoretic properties (such as subject reduction).

So far we have focused on a specific (but arbitrary) type H : Type0. We are hopeful that
the result can be extended to any type, and this will be the focus of future work.

2

Subtype Universes Maclean and Luo

References

[1] David Aspinall. Subtyping with power types. In International Workshop on Computer Science
Logic, pages 156–171. Springer, 2000.

[2] Luca Cardelli. Structural subtyping and the notion of power type. POPL, 1988.

[3] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys (CSUR), 17(4):471–523, 1985.

[4] S. Chatzikyriakidis and Z. Luo. Formal Semantics in Modern Type Theories. Wiley & ISTE
Science Publishing Ltd., 2020. (to appear).

[5] Z. Luo. Formal semantics in modern type theories with coercive subtyping. Linguistics and
Philosophy, 35(6):491–513, 2012.

[6] Zhaohui Luo. Computation and reasoning, volume 20. Oxford University Press, 1994.

[7] Zhaohui Luo. Dependent record types revisited. In Proceedings of the 1st Workshop on Modules
and Libraries for Proof Assistants, pages 30–37. ACM, 2009.

[8] Zhaohui Luo, Sergei Soloviev, and Tao Xue. Coercive subtyping: theory and implementation.
Information and Computation, 223, 2013.

[9] Per Martin-Löf. Intuitionistic type theory. Bibliopolis Naples, 1984.

[10] Benjamin C Pierce. Bounded quantification is undecidable. Information and Computation, 112(1),
1994.

[11] A. Ranta. Type-Theoretical Grammar. Oxford University Press, 1994.

3

Flexible Coinduction in Agda

Luca Ciccone1, Francesco Dagnino2, and Elena Zucca2

1 University of Torino, Italy
2 University of Genova, Italy

Inference systems [2, 9] are a widely-used formalism to define predicates. An inference

system I is a set of rules
Pr

j
, with Pr⊆U , j∈U , for U a universe of judgments. In a proof tree

for j , nodes are (labeled with) judgments in U , j is the root, and a node j has children Pr only if

there is a rule
Pr

j
in I. The inductive interpretation Ind(I), and the coinductive interpretation

CoInd(I), are, in proof-theoretic terms, the sets of judgments with, respectively, a finite1, and
a possibly infinite proof tree.

Inference systems with corules [3, 7] are a recently proposed generalization allowing flexible
coinduction, that is, to define predicates which are neither inductive, nor purely coinductive.
An inference system with corules is a pair (I, Ico) where I and Ico are inference systems, whose
elements are called rules and corules, respectively. Its interpretation FCoInd(I, Ico) is the set
of judgments with a possibly infinite proof tree in I, where all nodes have a finite proof tree in
I∪Ico, that is, the (standard) inference system consisting of rules and corules. For instance, the
following inference system defines the maximal element of a list, where [x] is the list consisting
of only x, and x : u the list with head x and tail u.

(max-h)
maxElem (x, [x])

(max-t)
maxElem (y, u)

maxElem (z, x:u)
z = max(x, y)

The inductive interpretation gives the correct result only on finite lists. However, the coinduc-
tive one fails to be a function. For instance, set L the infinite list 1 : 2 : 1 : 2 : 1 : 2 : . . ., any
judgment maxElem (L, x) with x ≥ 2 has an infinite proof tree. By adding a corule (in this
case a coaxiom), wrong results are “filtered out”:

(max-h)
maxElem (x, [x])

(max-t)
maxElem (y, u)

maxElem (z, x:u)
z = max(x, y) (co-max-h)

maxElem (x, x:u)

Indeed, only for maxElem (1:2:L, 2) each node of the infinite proof tree has a finite proof tree
in the inference system extended by the corule. We refer to [3, 4, 5, 7] for other examples.

Bounded coinduction [3, 7] is the proof technique, generalizing standard coinduction, to
show completeness of an inference system with corules with respect to a specification.

The aim of this work is to investigate how to express in Agda inference systems with corules,
and the related proof techniques. To this end, we have to face two challenges.

• Inductive and coinductive predicates can be directly translated into an Agda type, which
has in turn an inductive or coinductive semantics. Notably, the former are expressed as
inductive types by the data construct, whereas, for the latter, the standard library pro-
vides a representation based on sized types [1, 8] and thunks, which are, roughly speaking,
suspended computations used to simulate laziness. For predicates which are neither in-
ductive nor purely coinductive, instead, Agda has no built-in support.

• Agda inductive and coinductive types implicitly provide their corresponding induction and
coinduction principles. The bounded coinduction principle, instead, needs to be explicitly
expressed and proved.

1Assuming that sets of premises are finite, otherwise we should say a tree with no infinite paths.

Flexible Coinduction in Agda Ciccone, Dagnino, Zucca

In [6], we have provided a methodology to face the above issues, illustrated by several
examples. To express the predicate, we use two Agda types.

• A coinductive type that represents the interpretation of the inference system with corules,
that is, FCoInd(I, Ico).

data _maxElem_ : Nat → Colist Nat ∞ → Size → Set where

max-h : ∀ {x xs i} → Thunk.force xs ≡ [] → (x maxElem (x :: xs)) i

max-t : ∀ {n x z xs i} → Thunk (n maxElem (Thunk.force xs)) i →
z ≡ max n x → z maxElem-ind (x :: xs) → (z maxElem (x :: xs)) i

Accordingly with the definition, this type internally uses the following other type:

• An inductive type that represents the inductive interpretation of the inference system
consisting of rules and corules, that is, Ind(I ∪ Ico).

data _maxElem-ind_ : Nat → Colist Nat ∞ → Set where

max-h-ind : ∀ {x xs} → Thunk.force xs ≡ [] → x maxElem-ind (x :: xs)

max-t-ind : ∀ {n x z xs} → n maxElem-ind (Thunk.force xs) →
z ≡ max n x → z maxElem-ind (x :: xs)

co-max-h : ∀ {x xs} → x maxElem-ind (x :: xs)

In these types, type constructors nicely correspond to the (meta-)rules and (in the latter) also
meta-corules. Moreover, an auxiliary type (called Step) is defined, expressing the paramet-
ric predicate that, for a given specification, a judgment is the consequence of a rule whose
premises satisfy the specification. Finally, the bounded coinduction principle corresponding to
the predicate can be proved, using the type Step defined before to express consistency.

Among the examples in [6], it is worthwhile to mention that we investigated temporal
operators. Generally, we reason inductively to prove a liveness property, and coinductively to
prove a safety property. For more complex properties mixing safety and liveness, inference
systems with corules look like a promising approach, as we illustrate on the infinitely-often
example.

In ongoing work we aim at transforming this methodology in an automatic support for a
user. We are considering two different approaches.

• To formalize in Agda the meta-theory. That is, to represent a generic inference system
with corules as an Agda type parametric on the universe:

IS : Set → Set1
IS U = List U → U → Set

and to develop on top of this significant definitions and theorems, e.g., interpretation and
bounded induction. In this way, to express a specific inference system with corules, a user
should just supply the arguments. The drawback of this approach from the user’s point
of view is that the specific (meta-)rules would be not directly “visible” in Agda code.

• To allow a user to write an inference system with corules in a natural syntax, and auto-
matically generate the corresponding Agda types. This could be achieved by an external
tool, that is, user definitions could be given to a parser producing the Agda code. An
alternative, more interesting and challenging, solution, is to write the inference system as
an Agda type, and then use reflection, which was recently added in Agda2.

The two approaches could be combined by automatically generating, in the latter, the arguments
to be provide to the parametric Agda type in the former.

2https://agda.readthedocs.io/en/v2.6.0.1/language/reflection.html

2

Flexible Coinduction in Agda Ciccone, Dagnino, Zucca

References

[1] Andreas Abel. MiniAgda: Integrating sized and dependent types. In Proceedings Workshop on
Partiality and Recursion in Interactive Theorem Provers, PAR 2010, Edinburgh, UK, 15th July
2010, pages 14–28, 2010. URL: https://doi.org/10.4204/EPTCS.43.2, doi:10.4204/EPTCS.43.2.

[2] Peter Aczel. An introduction to inductive definitions. In Handbook of Mathematical logic. North
Holland, 1977.

[3] Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference systems by coax-
ioms. In Hongseok Yang, editor, 26th European Symposium on Programming, ESOP 2017, vol-
ume 10201 of Lecture Notes in Computer Science, pages 29–55. Springer, 2017. doi:10.1007/

978-3-662-54434-1_2.

[4] Davide Ancona, Francesco Dagnino, and Elena Zucca. Reasoning on divergent computations with
coaxioms. PACMPL, 1(OOPSLA):81:1–81:26, 2017.

[5] Davide Ancona, Francesco Dagnino, and Elena Zucca. Modeling infinite behaviour by corules. In
ECOOP’18 - Object-Oriented Programming, pages 21:1–21:31, 2018.

[6] Luca Ciccone. Flexible coinduction in agda, 2020. URL: https://arxiv.org/abs/2002.06047,
arXiv:2002.06047.

[7] Francesco Dagnino. Coaxioms: flexible coinductive definitions by inference systems. Logical Methods
in Computer Science, 15(1), 2019. URL: https://doi.org/10.23638/LMCS-15(1:26)2019, doi:

10.23638/LMCS-15(1:26)2019.

[8] John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using sized
types. In Hans-Juergen Boehm and Guy L. Steele Jr., editors, Conference Record of POPL’96:
The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers
Presented at the Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages 410–
423. ACM Press, 1996. URL: https://doi.org/10.1145/237721.240882, doi:10.1145/237721.
240882.

[9] Xavier Leroy and Hervé Grall. Coinductive big-step operational semantics. Information and Com-
putation, 207(2):284–304, 2009.

3

Soundness conditions for big-step semantics
(Extended Abstract)

Francesco Dagnino1, Viviana Bono2, Elena Zucca1, and Mariangiola
Dezani-Ciancaglini2

1 DIBRIS, University of Genova
2 Computer Science Department, University of Torino

The semantics of programming languages or software systems specifies, for each program/sys-
tem configuration, its final result, if any. In the case of non-existence of a final result, there are
two possibilities:

• either the computation stops with no final result, and there is no means to compute
further: stuck computation,

• or the computation never stops: non-termination.

There are two main styles to define operationally a semantic relation: the small-step style
[4, 5], on top of a reduction relation representing single computation steps, or directly by a set
of rules as in the big-step style [2].

Within a small-step semantics it is straightforward to make the distinction between stuck
and non-terminating computations, while a typical drawback of the big-step style is that they
are not distinguished (no judgement is derived in both cases).

For this reason, even though big-step semantics is generally more abstract, and sometimes
more intuitive to design and therefore to debug and extend, in the literature much more effort
has been devoted to study the meta-theory of small-step semantics, providing properties, and
related proof techniques. Notably, the soundness of a type system (typing prevents stuck com-
putation) can be proved by progress and subject reduction (also called type preservation) [6].

Our quest is then to provide a general proof technique to prove the soundness of a predicate
with respect to an arbitrary big-step semantics. How can we achieve this result, given that in
big-step formulation soundness cannot even be expressed, since non-termination is modelled as
the absence of a final result exactly like stuck computation? The key idea is the following:

1. We define constructions yielding an extended version of a given arbitrary big-step se-
mantics, where the difference between stuckness and non-termination is made explicit.
In a sense, these constructions show that the distinction was “hidden” in the original
semantics.

2. We provide a general proof technique by identifying three sufficient conditions on the
original big-step rules to prove soundness.

Keypoint (2)’s three sufficient conditions are local preservation, ∃-progress, and ∀-progress.
For proving the result that the three conditions actually ensure soundness, the setting up of the
extended semantics from the given one is necessary, since otherwise, as said above, we could
not even express the property.

However, the three conditions deal only with the original rules of the given big-step semantics.
This means that, practically, in order to use the technique there is no need to deal with the
extended semantics. This implies, in particular, that our approach does not increase the original
number of rules. Moreover, the sufficient conditions are conditions on single rules, which makes
explicit the proof fragments typically needed in a proof of soundness. Even though this is not

Dagnino, Bono, Zucca, and Dezani

exploited in the ESOP paper [1], this form of locality means modularity, in the sense that adding
a new rule implies adding the corresponding proof fragment only.

As an important by-product, in order to formally define and prove correct the keypoints (1)
and (2), we propose a formalisation of “what is a big-step semantics” which captures its essential
features. Moreover, we support our approach by presenting several examples, demonstrating
that: on the one hand, their soundness proof can be easily rephrased in terms of our technique,
that is, by directly reasoning on big-step rules; on the other hand, our technique is essential
when the property to be checked (for instance, soundness of a type system) is not preserved
by intermediate computation steps, whereas it holds for the final result. On a side note, our
examples concern type systems, but the meta-theory we present holds for any predicate.

We describe now in more detail the constructions of keypoint (1). Starting from an arbitrary
big-step judgment c⇒ r that evaluates configurations c into results r , the first construction
produces an enriched judgement c⇒tr t where t is a trace, that is, the (finite or infinite) sequence
of all the (sub)configurations encountered during the evaluation. In this way, by interpreting
coinductively the rules of the extended semantics, an infinite trace models divergence (whereas
no result corresponds to stuck computation). The second construction is in a sense dual. It
is the algorithmic version of the well-known technique presented in Exercise 3.5.16 from the
book [3] of adding a special result wrong explicitly modelling stuck computations (whereas
no result corresponds to divergence). Note that the latter approach is still inductive, hence
computable, since non-termination is modelled implicitly, differently from the former. However,
either approach is useful since it allows reasoning on different properties: notably, by trace
semantics and wrong semantics we can express two flavours of soundness, soundness-may and
soundness-must, respectively, and show the correctness of the corresponding proof technique.
This achieves our original aim, and it should be noted that we define soundness with respect
to a big-step semantics within a big-step formulation, without resorting to a small-step style
(indeed, the two extended semantics are themselves big-step).

Lastly, we consider the issue of justifying on a formal basis that the two constructions are
correct with respect to their expected meaning. For instance, for the wrong semantics we would
like to be sure that all the cases are covered. To this end, we define a third construction,
dubbed pev for “partial evaluation”, which makes explicit the computations of a big-step se-
mantics, intended as the sequences of execution steps of the naturally associated evaluation
algorithm. Formally, we obtain a reduction relation on approximated proof trees, so termina-
tion, non-termination and stuckness can be defined as usual. Then, the correctness of traces
and wrong constructions is proved by showing they are equivalent to pev for diverging and
stuck computations, respectively.

This is the extended abstract of a paper to appear in ESOP’20 [1].

References

[1] Francesco Dagnino, Viviana Bono, Elena Zucca, and Mariangiola Dezani-Ciancaglini. Soundness
conditions for big-step semantics. In ESOP 2020 - European Symposium on Programming, 2020.
To appear.

[2] Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin
Wirsing, editors, STACS’87 - Symposium on Theoretical Aspects of Computer Science, volume 247
of Lecture Notes in Computer Science, pages 22–39, Berlin, 1987. Springer.

[3] Benjamin C. Pierce. Types and programming languages. MIT Press, Cambridge, Massachusetts,
2002.

2

Dagnino, Bono, Zucca, and Dezani

[4] Gordon D. Plotkin. A structural approach to operational semantics. Technical report, Aarhus
University, 1981.

[5] Gordon D. Plotkin. A structural approach to operational semantics. Journal of Logic and Algebraic
Programming, 60-61:17–139, 2004.

[6] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and Compu-
tation, 115(1):38–94, 1994.

3

Ordinal Notation Systems in Cubical Agda

Fredrik Nordvall Forsberg1 and Chuangjie Xu2

1 University of Strathclyde, Glasgow, UK
2 Ludwig-Maximilians-Universität München, Munich, Germany

Abstract

We present ordinal notation systems representing ordinals below ε0, using recent type-
theoretical innovations such as mutual inductive-inductive definitions and higher inductive
types. Ordinal arithmetic can be developed for these systems, and they admit a transfinite
induction principle. We prove that the notation systems are equivalent, and so we can
transport results between them using the univalence principle. All our constructions have
been implemented in cubical Agda.

Introduction

Ordinals and ordinal notation systems play an important role in program verification, since
they can be used to prove termination of programs — using ordinals to verify that programs
terminate was suggested already by Turing [Tur49]. The idea is to assign an ordinal to each
input, and then prove that the assigned ordinal decreases for each recursive call [DM79]. Hence
the program must terminate by the well-foundedness of the order on ordinals.

If one wants to carry out such proofs in a theorem prover, one must first represent ordi-
nals inside it. This is usually done via some kind of ordinal notation system (however see
Blanchette, Popescu and Traytel [BPT14] for well-orders encoded directly in Isabelle/HOL,
and Schmitt [Sch17] for an axiomatic method, which is implemented in the KeY program
verification system). Typically, ordinals are represented by trees [Der93, DR92]; for instance,
binary trees can represent the ordinals below ε0 as follows: the leaf represents 0, and a tree
with subtrees representing ordinals α and β represents the sum ωα + β. However, an ordinal
may have multiple such representations. As a result, traditional approaches to ordinal notation
systems [Buc91, Sch77, Tak87] usually have to single out a subset of ordinal terms in order to
provide unique representations. Instead, we show how modern type-theoretic features in cubical
Agda can be used to directly give faithful representations of ordinals below ε0. More details can
be found in our recent paper [NFXG20].

Agda Formalisation. Our development has been fully formalised in Agda, and can be found
at https://doi.org/10.5281/zenodo.3588624.

An Ordinal Notation System Using Mutual Definitions

The first feature we use is mutual inductive-inductive definitions [NF13]. This allows us to
define an ordinal notation system for ordinals below ε0 based on Cantor normal forms

ωβ1 + ωβ2 + · · ·+ ωβn with β1 ≥ β2 ≥ · · · ≥ βn.

By insisting that the ordinal notations βi are again in Cantor normal form, and given in
decreasing order, we can recover a unique representation of ordinals. To achieve this, we define
MutualOrd : Type0 simultaneously with an order relation < : MutualOrd→ MutualOrd→ Type0,
and a function fst : MutualOrd→ MutualOrd, which extracts the first exponent of an ordinal in
Cantor normal form:

Ordinal Notation Systems in Cubical Agda Nordvall Forsberg and Xu

data MutualOrd where
0 : MutualOrd
ωˆ + [] : (a b : MutualOrd) → a ≥ fst b → MutualOrd

data < where
<1 : 0 < ωˆ a + b [r]
<2 : a < c → ωˆ a + b [r] < ωˆ c + d [s]
<3 : a ≡ c → b < d → ωˆ a + b [r] < ωˆ c + d [s]

fst 0 = 0
fst (ωˆ a + []) = a

where we write a ≥ b = (a > b)] (a ≡ b). Note how all definitions refer to each other. (It is
possible to avoid the simultaneous recursive definition of the function fst by defining its graph
inductively instead.) An advantage is that there are no intermediate “junk” terms, and that the
more precise types often suggest necessary lemmas to prove. This can be seen already when
defining basic operations such as ordinal addition and multiplication. To justify that MutualOrd
really represents ordinals, we show that it satisfies transfinite induction:

Theorem. Transfinite induction holds for MutualOrd, i.e. there is a proof

MTI : (P : MutualOrd → Type `)→ (∀ x → (∀ y → y < x → P y) → P x)→ ∀ x → P x.

An Ordinal Notation System Using Higher Inductive Types

We use the feature of higher inductive types [LS19] that has recently been added to Agda under
the --cubical flag [VMA19] to define a different ordinal notation system for ordinals below ε0
as a quotient inductive type [ACD+18]:

data HITOrd : Type0 where
0 : HITOrd
ωˆ ⊕ : HITOrd → HITOrd → HITOrd
swap : ∀ a b c → ωˆ a ⊕ ωˆ b ⊕ c ≡ ωˆ b ⊕ ωˆ a ⊕ c
trunc : isSet HITOrd

Note how the path constructor swap is used to identify multiple representations of the same
ordinal — this way, we again recover uniqueness. Because all operations on HITOrd must respect
swap, it is not so straightforward to implement ordinal arithmetic on HITOrd directly. However,
it is not hard to implement Hessenberg arithmetic [Hes06] — a variant of ordinal arithmetic
which is commutative — using cubical Agda’s pattern matching.

MutualOrd and HITOrd are Equivalent

Different representations are convenient for different purposes. For instance, the higher inductive
type approach is convenient for defining e.g. commutative Hessenberg arithmetic, while the
mutual representation is convenient for ordinary ordinal arithmetic, and proving transfinite
induction. Using the univalence principle [UFP13], we can transport constructions and properties
between the different systems as needed, after proving that they indeed are equivalent:

Theorem. MutualOrd and HITOrd are equivalent, i.e. there is M'H : MutualOrd ' HITOrd.

The direction of the equivalence from MutualOrd to HITOrd is easy: we simply forget about the
order witnesses. The other direction is more interesting, and basically amounts to implementing
insertion sort on MutualOrd.

2

Ordinal Notation Systems in Cubical Agda Nordvall Forsberg and Xu

References

[ACD+18] Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and Fredrik Nord-
vall Forsberg. Quotient inductive-inductive types. In Christel Baier and Ugo Dal Lago,
editors, Foundations of Software Science and Computation Structures, volume 10803 of
Lecture Notes in Computer Science, pages 293–310, Heidelberg, Germany, 2018. Springer.

[BPT14] Jasmin Christian Blanchette, Andrei Popescu, and Dmitriy Traytel. Cardinals in Is-
abelle/HOL. In Gerwin Klein and Ruben Gamboa, editors, Interactive Theorem Proving,
volume 8558 of Lecture Notes in Computer Science, pages 111–127, Heidelberg, Germany,
2014. Springer.

[Buc91] Wilfried Buchholz. Notation systems for infinitary derivations. Archive for Mathematical
Logic, 30:227–296, 1991.

[Der93] Nachum Dershowitz. Trees, ordinals and termination. In Marie-Claude Gaudel and Jean-
Pierre Jouannaud, editors, Theory and Practice of Software Development, volume 668 of
Lecture Notes in Computer Science, pages 243–250, Heidelberg, Germany, 1993. Springer.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Com-
munications of the ACM, 22(8):465–476, 1979.

[DR92] Nachum Dershowitz and Edward M. Reingold. Ordinal arithmetic with list structures.
In Anil Nerode and Michael Taitslin, editors, Logical Foundations of Computer Science,
volume 620 of Lecture Notes in Computer Science, pages 117–138, Heidelberg, Germany,
1992. Springer.

[Hes06] Gerhard Hessenberg. Grundbegriffe der Mengenlehre, volume 1. Vandenhoeck & Ruprecht,
Göttingen, Germany, 1906.

[LS19] Peter Lefanu Lumsdaine and Michael Shulman. Semantics of higher inductive types. Mathe-
matical Proceedings of the Cambridge Philosophical Society, pages 1–50, 2019.

[NF13] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea University,
2013.

[NFXG20] Fredrik Nordvall Forsberg, Chuangjie Xu, and Neil Ghani. Three equivalent ordinal notation
systems in Cubical Agda. In Proceedings of the 9th ACM SIGPLAN International Conference
on Certified Programs and Proofs (CPP ’20), pages 172–185. ACM, 2020.

[Sch77] Kurt Schütte. Proof Theory. Springer, Heidelberg, Germany, 1977.

[Sch17] Peter H. Schmitt. A mechanizable first-order theory of ordinals. In Renate Schmidt and
Cláudia Nalon, editors, Automated Reasoning with Analytic Tableaux and Related Methods,
volume 10501 of Lecture Notes in Computer Science, pages 331–346, Heidelberg, Germany,
2017. Springer.

[Tak87] Gaisi Takeuti. Proof Theory. North-Holland Publishing Company, Amsterdam, 2 edition,
1987.

[Tur49] Alan Turing. Checking a large routine. In Report of a Conference on High Speed Auto-
matic Calculating Machines, pages 67–69, Cambridge, UK, 1949. University Mathematical
Laboratory.

[UFP13] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[VMA19] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: a dependently typed
programming language with univalence and higher inductive types. Proceedings of the ACM
on Programming Languages, 3(ICFP):87:1–87:29, 2019.

3

Shallow embedding of type theory is morally correct ∗

Ambrus Kaposi1, András Kovács1, and Nicolai Kraus2

1 Eötvös Loránd University, Budapest, Hungary
akaposi|kovacsandras@inf.elte.hu

2 University of Birmingham, United Kingdom
n.kraus@bham.ac.uk

Deep and shallow embeddings of monoids. In intensional type theory, when proving
theorems that hold for every monoid, the usual method is assuming that there exists a pointed
type with a binary operation and witnesses of some equalities (following Agda, we write ≡ for
the equality type and = for definitional equality). We call this deep embedding, following the
terminology for domain-specific languages [6].

M : Set ass : (a b c : M)→ (a⊗ b)⊗ c ≡ a⊗ (b⊗ c)
u : M idl : (a : M)→ u⊗ a ≡ a
– ⊗ – : M→ M→ M idr : (a : M)→ a⊗ u ≡ a

Combining the equalities idl, idr using congruence (ap) and transitivity, we prove the following
example theorem.

thm : (a : M)→ a⊗ (u⊗ u) ≡ a
thm := λa.trans (ap (a⊗ –) (idl u)) (idr a)

An alternative approach is shallow embedding of the monoid. Here we work with a concrete
monoid such as the following one.

M := Bool→ Bool ass a b c := reflλx.a (b (c x))

u := λx.x idl a := refla

a⊗ b := λx.a (b x) idr a := refla

The advantage of using this monoid compared to a deeply embedded one is that the laws hold
definitionally. For example, the proof of the above theorem now becomes trivial:

thm : (a : M)→ a⊗ (u⊗ u) ≡ a
thm := λa.refla

This monoid does not have more definitional equalities than a general monoid, e.g. we don’t
have the property that any two elements are equal (as would be the case if we used > → > as
carrier). However, it has the property that there is an element propositionally unequal to u,
e.g. (λa.true). Also, assuming function extensionality, we have a ⊗ a ⊗ a ≡ a propositionally.
These do not hold for every monoid, hence we can prove too many theorems.

∗The first author was supported by by the National Research, Development and Innovation Fund of Hun-
gary, financed under the Thematic Excellence Programme funding scheme, Project no. ED 18-1-2019-0030
(Application-specific highly reliable IT solutions), by the ÚNKP-19-4 New National Excellence Program of
the Ministry for Innovation and Technology and by the Bolyai Fellowship of the Hungarian Academy of Sci-
ences. The second author was supported by the European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002). The first and third authors were supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.2-16-2017-00013 and EFOP-3.6.3-VEKOP-16-2017-00002).
Finally, the third author acknowledges support by The Royal Society (URF\R1\191055).

Shallow embedding of type theory is morally correct Kaposi, Kovács, Kraus

We disallow such illegal constructions with an implementation hiding trick, using the record
types of Agda with definitional η laws. The monoid is defined in the module Secret as a record
M wrapping the function type Bool → Bool with constructor mkM and destructor unM. We
only import Secret in the module Monoid and other modules are only allowed to import Monoid,
but not Secret.

module Secret where module Monoid where

record M := mkM {unM : Bool→ Bool} import Secret privately

u := mkM (λx.x) M := Secret.M

a⊗ b := mkM (λx.unM a (unM b x)) u := Secret.u

– ⊗ – := Secret.– ⊗ –

A module importing Monoid only has access to M, u and –⊗–, but not mkM and unM. However,
the definitional behaviour of the operations is exported, so proofs are still as easy as for the
naive shallow embedding.

In principle, we should be able to transfer any proof about the shallowly embedded monoid
to a deeply embedded one.

Deep and shallow embeddings of type theory. Type theory can also be seen as an
algebraic structure [5]. Compared to monoids, there are more sorts and many more operations
and equations. Metatheoretic proofs about type theory can be seen as constructions on models
of type theory. This is the case e.g. for normalisation [1], parametricity [2], or canonicity [4],
the latter two being special cases of gluing [7], a construction on a weak homomorphism of
models. When formalising such arguments for deeply embedded models, combining equalities
and transporting over them becomes a huge bureaucratic burden, sometimes called “transport
hell”. However, as in the case of monoids, we are able to reuse properties of our metatheory (e.g.
strict associativity of function composition) to define a shallow embedding of type theory, where
(most) equalities are definitional. The shallow embedding is a concrete model (the standard
model [2] – sometimes called set model or metacircular interpretation) in which all equations
hold definitionally, and as before, we only export the interface. In this model, contexts are
defined as Set, a type over Γ is a Γ → Set function, terms have dependent function type
(γ : Γ)→ Aγ.

Moral correctness. By proving all equations using refl, we can check that our shallow embed-
ding has enough equalities. The implementation hiding makes sure that we cannot construct too
many elements and proofs. However, we have to prove that we don’t have too many definitional
equalities. When showing this, we assume that Agda implements type theory correctly and we
look at the standard model from outside of Agda. Externally, contexts are given by Tm · U
(Agda-terms in the empty context of type U for the universe), types are in Tm · (El Γ ⇒ U),
terms are in Tm · (Π (El Γ) (El (A $ var 0))), and so on. We prove that for any two syntactic
terms, if their external standard interpretations are definitionally equal, then they are also def-
initionally equal. This shows that the standard model does not add more equalities than there
are in the syntax.

Applications. Using this form of shallow embedding, for a type theory with an infinite hi-
erarchy of universes, Π, Σ, Bool and Id types, we formalised [8] the syntactic logical predicate
interpretation of type theory [3], canonicity [4], and gluing [7]. The line count of the para-
metricity proof is roughly 20% of the same proof for the deeply embedded syntax [2]. More
details can be found in a paper presented at MPC 2019 [9].

Shallow embedding of type theory is morally correct Kaposi, Kovács, Kraus

References

[1] Thorsten Altenkirch and Ambrus Kaposi. Normalisation by evaluation for dependent types. In
Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures
for Computation and Deduction (FSCD 2016), volume 52 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 6:1–6:16, Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik.

[2] Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive types.
In Rastislav Bodik and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016, pages 18–29. ACM, 2016.

[3] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free — parametricity for
dependent types. Journal of Functional Programming, 22(02):107–152, 2012.

[4] Thierry Coquand. Canonicity and normalization for dependent type theory. Theor. Comput. Sci.,
777:184–191, 2019.

[5] Peter Dybjer. Internal type theory. In Lecture Notes in Computer Science, pages 120–134. Springer,
1996.

[6] Jeremy Gibbons and Nicolas Wu. Folding domain-specific languages: Deep and shallow embeddings
(functional pearl). SIGPLAN Not., 49(9):339–347, August 2014.

[7] Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for type theory. In Herman Geuvers,
editor, Proceedings of the 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019), 2019.

[8] Ambrus Kaposi, András Kovács, and Nicolai Kraus. Formalisations in Agda using a morally correct
shallow embedding, May 2019.

[9] Ambrus Kaposi, András Kovács, and Nicolai Kraus. Shallow embedding of type theory is morally
correct. In Graham Hutton, editor, Mathematics of Program Construction, pages 329–365, Cham,
2019. Springer International Publishing.

A type system for simple quantum processes

Vı́tor Fernandes1, Renato Neves2, and Lúıs Barbosa2

1 University of Minho, Braga, Portugal
vegf17@gmail.com

2 International Iberian Nanotechnology Laboratory, INESC-TEC & University of Minho, Braga,
Portugal

{nevrenato,lsb}@di.uminho.pt

Motivation and context. The development of quantum mechanics in the last century offers
the possibility of building computers ruled by quantum laws that perform much better in certain
tasks than the classical counterparts. Examples of such tasks include unstructured searching
and factorization of integers [6]. Not only this, quantum mechanics also gave rise to new
communication protocols, such as the quantum teleportation and the BB84 communication
protocols [6].

The few existing quantum computers adopt a QRAM architecture [4]: in a nutshell, a
master-slave architecture in which a classical computer (the master) handles a complex task
by, among other things, selecting some highly costly computational subtasks and requesting a
quantum computer (the slave) to solve them. Such an architecture is necessary, because quan-
tum computers become increasingly unreliable as their computational tasks grow in length and
(quantum) memory requirements. The interaction between classical and quantum computers
in this architecture highlights the importance of considering concurrency and communication in
models where both classical and quantum features are present. In particular, it seems relevant
to extend the theory of process algebra to the quantum domain.

Quantum process algebras have already been introduced in the past, two main examples
being qCCS [1] and CQP [3]. Both accommodate classical and quantum operations, and thus
can be used to study the architecture above. The presence of quantum features demands certain
syntactic restrictions for ensuring physical realisability of processes and which can take complex
form. The prime example is measurement of qubits (the basic information unit in quantum
computing): measuring a qubit essentially destroys it. Another interesting case, arising from
communication, is qubit communication: once a qubit (a physical resource) is sent away by a
process the latter no longer has access to it.
Goal. Our goal is to study the role of type systems in ensuring physical realisability of processes.
Here we discuss measurement and qubit communication, but we are also particularly interested
on quantum decoherence: a qubit stores information only for very short periods of time.
Contributions. CQP is a process algebra with quantum features in the spirit of π-calculus.
qCCS, on the other hand, is a simpler quantum process algebra in the spirit of (value-passing)
CCS. The latter is our object of study. We present a type system (more formally, a derivation
system) for qCCS to ensure physical realisability (i.e. implementable in quantum systems)
of processes in what concerns measurement and qubit communication; subsequently, we prove
type preservation and weakening. We regard these results as a basic stepping stone for achieving
the goal described above. Details of this work are found in [2, 7].

CQP already has a type system, but it does not support recursion.
Quantum CCS. qCCS is an extension of value-passing CCS [5] with operations for manipu-
lating qubits (specifically, super-operators and measurement). A fragment of its syntax is given
by the grammar,

P,Q ::= ε[q̃].P | c?x.P | c!e.P | c?q.P | c!q.P | M[q;x].P | P + Q | P || Q

A type system for simple quantum processes Fernandes, Neves and Barbosa

The expression ε[q̃] represents the action of a super-operator ε on a finite list of qubits q̃.
The letter c represents a classical communication channel, c a quantum communication channel,
x a classical variable, e an arithmetic expression over Real, q a quantum variable, and M[q;x]
represents the measurement of qubit q with the result stored on a classical variable x. The
other constructs are standard in process algebra. As it is, the grammar allows processes such
as c!q.ε[q] – which reads “send the qubit q via channel c and then apply operator ε to q” – and
processes such as M[q;x].c!q which reads “measure qubit q and then send it away”. As discussed
before, these processes are physically unrealisable. The authors of qCCS fix this by restricting
composition of processes on basis of their free quantum variables [1]. Our contribution is in
essence the extraction of a type system from these restrictions.
Type system. The type system relative to the fragment of the grammar above is as follows:

Γ ` P q̃ ⊆ ΓQ

Γ ` ε[q̃].P (OP)
Γ, x : C ` P
Γ ` c?x.P (C-IN)

Γ ` P fv(e) ⊆ ΓC

Γ ` c!e.P (C-OUT)

Γ, x : C ` P
Γ, q : Q ` M[q;x].P

(MEAS)
Γ, q : Q ` P
Γ ` c?q.P

(Q-IN)
Γ ` P

Γ, q : Q ` c!q.P
(Q-OUT)

Γ1 ` P Γ2 ` Q
Γ1 ∪ Γ2 ` P + Q

(SUM)
Γ1 ` P Γ2 ` Q ΓQ

1 ∩ ΓQ
2 = ∅

Γ1 ∪ Γ2 ` P || Q
(COMM)

where Γ is a non-repetitive list of quantum variables q : Q and classical variables x : C. Given a
typing context Γ we denote its projection on quantum variables by ΓQ and on classical variables
by ΓC . The judgement Γ ` P reads “from the variables in Γ we build the process P”. In detail,
rule (OP) corresponds to the application of a super-operator to a list of qubits q̃ which must
exist in Γ. Rule (Q-OUT) corresponds to sending qubit q away via channel c, and forbids P

from accessing it by ensuring that q is not in Γ. Rule (MEAS) represents measuring a qubit
q; similarly to the previous rule it ensures that P has no access to the qubit. Rule (COMM)
ensures that processes P,Q cannot run in parallel with shared quantum variables. Similarly to
communicating qubits and measurement, this restriction arises from the fact that qubits need
to be treated as physical resources. For example, without the restriction we would be able to
write M[q;x]. c!ok · · · || c?ok. ε(q) . . . , a process not physically realisable because the process on
the left destroys q but the process on the right acts as if the qubit still exists. The others rules
in the type system are standard.

The restriction on shared variables echoes the famous topic of mutual exclusion in accessing
critical memory sections [5]. A very distinctive feature in the quantum case, however, is that
even if qubits are not shared, one process can still change the qubits of the other by resorting
to entanglement [6].
Some properties of the type system. The following properties of the type system proposed
are proved by induction. See the details in [2, 7].

Theorem 1 (Weakening). Assume that Γ ` P and let x be either a classical or a quantum
variable in Γ. Then if x is a classical variable (resp. a quantum variable) it is true that
Γ, x : C ` P (resp. Γ, x : Q ` P)

Theorem 2 (Type preservation). Assume that Γ ` P (in words, that P is physically realisable).
Then every process reached by executing P is also physically realisable.

The last theorem and rule (COMM) ensure that qubits are never shared simultaneously
along the parallel execution of two processes.

2

A type system for simple quantum processes Fernandes, Neves and Barbosa

References

[1] Yuan Feng, Runyao Duan, and Mingsheng Ying. Bisimulation for quantum processes. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 34(4):17, 2012.

[2] Vitor Fernandes. Integration of time in a quantum process algebra. Master’s thesis, Dep. Informat-
ica, Universidade do Minho, 2019. Available at https://github.com/vegf17/dissertation.

[3] Simon J Gay and Rajagopal Nagarajan. Types and typechecking for communicating quantum
processes. Mathematical Structures in Computer Science, 16(3):375–406, 2006.

[4] Emmanuel Knill. Conventions for quantum pseudocode. Technical report, Los Alamos National
Lab., NM (United States), 1996.

[5] Robin Milner. Communication and concurrency, volume 84. Prentice hall New York etc., 1989.

[6] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cam-
bridge University Press, Cambridge, 2000.

[7] Luis Barbosa Vitor Fernandes, Renato Neves. Proof of type preservation. Technical report, 2020.
Available at https://github.com/vegf17/dissertation.

3

6 Types, proofs and programs (WG3)

82

Dependent Type Theory in Polarised Sequent Calculus
Étienne Miquey1, Xavier Montillet2, and Guillaume Munch-Maccagnoni2

1 CNRS, LSV, ÉNS Paris-Saclay, Inria
2 Inria, LS2N CNRS

Thanks to several works on classical logic in proof theory, it is nowwell-established that continuation-
passing style (CPS) translations in call by name and call by value correspond to different polarisations
of formulae (Girard, 1991; Danos, Joinet, and Schellinx, 1997; Laurent, 2002). Extending this observa-
tion, the last author proposed a term assignment for a polarised sequent calculus (where the polarities
of formulae determine the evaluation order), in which various calculi from the literature can be obtained
with macros responsible for the choices of polarities (Munch-Maccagnoni, 2013, III). It explains various
CPS translations from the literature by means of a decomposition through a single CPS for sequent cal-
culus. This calculus has later proved to be a fruitful setting to study the addition of effects and resource
modalities (Curien, Fiore, and Munch-Maccagnoni, 2016), providing a categorical proof theory of Call
By Push Value semantics (Levy, 2004).

We propose to bring together a dependently-typed theory (ECC) and polarised sequent calculus, by
presenting a calculus Ldep suitable as a vehicle for compilation and representation of effectful computa-
tions. As a first step in that direction, we show that Ldep advantageously factorize a dependently typed
continuation-passing style translation for ECC+call/cc. To avoid the inconsistency of type theory
with control operators, we restrict their interaction. Nonetheless, in the pure case, we obtain an un-
restricted translation from ECC to itself, thus opening the door to the definition of dependently typed
compilation transformations.

Overview of Ldep Recall that the key notion of term assignments for sequent calculi is that of a com-
mand, written ⟨t ‖ e⟩, which can be understood as a state of an abstract machine, representing the evalua-
tion of an proof (or expression) t against a counter-proof e that we call context. Their typing judgements
are of the form Γ ⊢ t ∶ A ∣ Δ and Γ ∣ e ∶ A ⊢ Δ, which correspond respectively to underlying sequents
Γ ⊢ A,Δ and Γ, A ⊢ Δ, in which A is in both cases the principal formula of the sequent. The command
⟨t ‖ e⟩ is the result of applying the cut rule with t and e as premises: ⟨t ‖ e⟩ ∶ (Γ ⊢ Δ). It represents a
cut rule with no principal formula.

But, in comparison to other presentations of sequent calculi, and like in Girard’s original formulation
of LC, our logic features a negation operator ⋅⊥ which is involutive strictly: A = A⊥⊥. This involution
allows us to represent any sequent c ∶ (Γ ⊢ Δ) (resp. Γ ⊢ t ∶ A ∣ Δ) as a sequent c ∶ (⊢ Γ⊥,Δ) (resp.
⊢ Γ⊥,Δ ∣ t ∶ A) with all formulae on the right. Thus, we are able to use a single grammar to describe
both expressions and contexts.

The sequent calculus we propose is, in term of expressiveness, an extension of Luo’s ECC. Namely,
ECC contains dependent products Π(x ∶ A).B (becoming here a dependent &) and dependent sums
Σ(x∶A).B (becoming here a dependent⊗), a cumulative hierarchy of universes□i and an impredicative
propositional universe ℙ, the inductive type of booleans with dependent elimination B, and equalities
between terms t = u:
Atoms C ⩴ x || B || ℙ || □i

|| t = u
Types+ P ⩴ C || A⊗ x.B || ⇓A
Types⊝ N ⩴ C⊥ ||

&

(A).xB || ⇑A
Types A⩴ P || N

Values V ⩴ x || A || V ⊗AV ′ || true || false || refl|| �(x⊗Ay).c || �⊝x.c || �[c1 ∣ c2] || �=c || �̂c
Terms t⩴ �+x.c || ̂ || V ⋄
Commands c ⩴ ⟨t ‖V ⟩+

where the notations �+x.c∕�⊝x.c distinguish the binder according to the polarity of the corresponding
type.

Dependent Type Theory in Sequent Calculus Style É. Miquey, X. Montillet and G. Munch-Maccagnoni

Since sequent calculi allow us to manipulate classical logic, we need to restrict dependencies to
avoid logical inconsistencies (Herbelin, 2005). Following previous works (Herbelin, 2012; Miquey,
2019), we only allow negative-elimination-free (NEF) terms within types, which are thunkable (value-
like) terms. In fact, we relax this constraint into that of Girard’s stoup (Girard, 1991), which similarly
implies thunkability/linearity (Munch-Maccagnoni, 2013, IV.6). We take advantage of delimited control
operators (in the form of �̂c and ̂) to separate regular and dependent typing modes:

⊢ Γ ∣ t ∶ P ⊢ Γ ∣ V ∶ P⊥

⟨t ‖V ⟩+ ∶ (⊢ Γ)
⊢ Γ ∣ t ∶ P ⊢B[∙] Γ ∣ V ∶ P⊥

t ∈ NEF⟨t ‖V ⟩+ ∶ (⊢B[t] Γ)
c ∶ (⊢ Γ, x ∶N)
⊢ Γ ∣ �⊝x.c ∶N

c ∶ (⊢N Γ)
⊢ Γ ∣ �̂c ∶N

c ∶ (⊢B[x] Γ, x ∶N)
⊢B[∙] Γ ∣ �⊝x.c ∶N

∙ ∉ B
⊢B Γ ∣ ̂ ∶ B⊥

Regular mode Dependent mode
Observe that in the latter, the turnstile is annotated with a return type whose dependencies evolve

with the typing derivation (see Miquey 2019 for more details). For instance, considering the type:
T (b) = �+x.

⟨
b ‖‖‖�[⟨ℙ ‖ x⟩+ ∣ ⟨B ‖ x⟩+]⟩+

which verifies that T (true) ≡ ℙ and T (false) ≡ B, we can inhabit it with the following term:

⊢ b ∶ B⊥ ∣ b ∶ B

⊢∣ Π(X ∶ ℙ).X ∶ ⇑T (true)
⟨Π(X ∶ ℙ).X ‖ ̂⟩⊝ ∶ (⊢⇑T (true))

⊢∣ true ∶ ⇑T (false)
⟨true ‖ ̂⟩⊝ ∶ (⊢⇑T (false))

⊢⇑T (∙) b ∶ B⊥ ∣ �[⟨Π(X ∶ ℙ).X ‖ ̂⟩⊝ ∣ ⟨true ‖ ̂⟩⊝] ∶ B⊥

⟨
b ‖‖‖�[⟨Π(X ∶ ℙ).X ‖ ̂⟩⊝ ∣ ⟨true ‖ ̂⟩⊝]

⟩+ ∶ (⊢⇑T (b) b ∶ B⊥)

⊢ b ∶ B⊥ ∣ �̂
⟨
b ‖‖‖�[⟨Π(X ∶ ℙ).X ‖ ̂⟩⊝ ∣ ⟨true ‖ ̂⟩⊝]

⟩+ ∶ ⇑T (b)

CPS translations for ECC Following the approach advocated in Boulier, Pédrot, and Tabareau (2017),
the soundness of our system is proved by means of a syntactic model. In other words, we define a typed
translation from our system to (an extension of) Luo’s ECC Luo (1990). In broad lines, this translation
follows the structure of the call-by-value continuation-passing style translation highlighted in Miquey
(2019): we use dependent and parametric return types for continuations, and we translate NEF terms t at
two different levels [t]0 and [t]1 in a way that is reminiscent of parametricity translations. For instance,
the translations of a (closed and NEF) b boolean verify:

[b]1 ∶ Π(R ∶ B → ℙ).((Π(x ∶ B).R x)→ R [b]0))

Observe that by parametricity, this implies in particular that for any continuation k of parametric return
type R, we have [b]1Rk ≡ k [b]0, emphasizing that such a translation is only compatible with NEF
terms that observationally behave like values.

Insofar as we can easily embed ECC+call/cc (evaluated in call by value) in our system, this trans-
lation allows us to factorize a CPS translation from this calculus to the (pure) ECC:

ECC + call/cc
macros
←←←←←←←←←←←←←←←←←←←←←←←←←→ Ldep

CPS
←←←←←←←←←←←←←←←←→ ECC

Interestingly, by considering only the pure (by-value) ECC, we can define a dependently typed transla-
tion to itself without any kind of restriction on dependent types1. Our translation improves over Bowman,
Cong, Rioux, and Ahmed (2017) in that no extra assumption (in particular, we do not require an exten-
sional type theory) are necessary to prove its soundness.

1ACoq development formalizing some aspects of these ideas is available at: https://www.irif.fr/∼emiquey/content/CPS_ECC.v

2

Dependent Type Theory in Sequent Calculus Style É. Miquey, X. Montillet and G. Munch-Maccagnoni

References
Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The Next 700 Syntactical Models of
Type Theory. In CPP. https://doi.org/10.1145/3018610.3018620

William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2017. Type-Preserving CPS Trans-
lation of Î£ and Î Types is Not Not Possible. Proc. ACM Program. Lang. 2, POPL, Article Article 22,
33 pages. https://doi.org/10.1145/3158110

Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016. A Theory of Effects
and Resources: Adjunction Models and Polarised Calculi. In Proceedings of POPL ’16. https:

//doi.org/10.1145/2837614.2837652

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. 1997. A new deconstructive logic: linear
logic. Journal of Symbolic Logic (1997). https://doi.org/10.2307/2275572

Jean-Yves Girard. 1991. A new constructive logic: classic logic. Mathematical Structures in Computer
Science (1991). https://doi.org/10.1017/S0960129500001328

HugoHerbelin. 2005. On the Degeneracy of Sigma-Types in Presence of Computational Classical Logic.
In Proceedings of TLCA 2005 (LNCS), Pawel Urzyczyn (Ed.), Vol. 3461. Springer, 209–220. https:

//doi.org/10.1007/11417170_16

Hugo Herbelin. 2012. A Constructive Proof of Dependent Choice, Compatible with Classical Logic.
In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012,
Dubrovnik, Croatia, June 25-28, 2012. IEEE Computer Society, 365–374. https://doi.org/

10.1109/LICS.2012.47

Olivier Laurent. 2002. Étude de la polarisation en logique. Thèse de Doctorat. Université Aix-
Marseille II. https://tel.archives-ouvertes.fr/tel-00007884

Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis (Semantics Struc-
tures in Computation, V. 2). Kluwer Academic Publishers. https://doi.org/10.1007/

978-94-007-0954-6

Zhaohui Luo. 1990. An Extended Calculus of Constructions. PhD Thesis. University of Edinburgh.
https://era.ed.ac.uk/bitstream/handle/1842/12487/Luo1990.Pdf

Étienne Miquey. 2019. A Classical Sequent Calculus with Dependent Types. ACM Transactions on
Programming Languages and Systems 41 (2019). https://doi.org/10.1145/3230625

Guillaume Munch-Maccagnoni. 2013. Syntax and Models of a non-Associative Composition
of Programs and Proofs. Theses. Université Paris-Diderot - Paris VII. https://tel.

archives-ouvertes.fr/tel-00918642

3

On the logical structure of choice and bar induction
principles

Nuria Brede and Hugo Herbelin
1 University of Potsdam, Germany

nuria.brede@uni-potsdam.de
2 IRIF, CNRS, Université de Paris, Inria, France

hugo.herbelin@inria.fr

We develop an approach to choice principles and to their bar-induction contrapositive princi-
ples, as extensionality schemes connecting an “operational” or “intensional” view of respectively
ill-foundedness and well-foundedness properties to an “idealistic” or “observational” view of these
properties. In a first part, we classify and analyse the relations between different intensional
definitions of countable ill-foundedness and countable well-foundedness involving Bar Induction,
Dependent Choice, König’s Lemma and the Fan Theorem. In a second part, we integrate the
Ultrafilter Lemma to the picture and develop, for A a domain, B a codomain and T a “filter” on
finite approximations of functions from A to B, a “filtered” form of axiom of choice ACFABT

and dually of a generalised bar induction principle GBIABT such that, writing N and Bool for
the types of natural numbers and Booleans values respectively, we have:

• ACFABR∗ intuitionistically captures the strength of the general axiom of choice expressed
as ∀aA ∃bB R(a, b) → ∃α ∀aR(a, α(a))), where R∗ is an “unconstraining” filter deriving
pointwise from the relation R

• ACFABoolT intuitionistically captures the Boolean Maximal Ideal Theorem / Ultrafilter
Lemma

• ACFNBT intuitionistically captures the axiom of dependent choice

• ACFNBoolT captures the (choice) strength of Weak König’s Lemma (up to weak classical
reasoning)

• GBIABoolT intuitionistically captures Gödel’s completeness theorem in the form validity
implies provability

• GBI NBT intuitionistically captures the strength of Bar Induction principles

• GBI NBoolT intuitionistically captures the (choice) strength of the Weak Fan Theorem

For classifying the countable case, we use the definitions below, which all apply to a predicate
T over the set A∗ of finite sequences of elements of a given domain A. Our focus being purely
logical, we do not impose any arithmetical restriction (such as decidability) on the predicate.

We use the letter a to range over elements of A, the letter u to range over the elements of
A∗, n to range over the natural numbers N and α to range over functions from N to A. The
empty sequence is denoted 〈〉 and sequence extension u ? a.

Equivalent concepts on dual predicates
T is a tree T is monotone

∀u ∀a (u ? a ∈ T → u ∈ T) ∀u ∀a (u ∈ T → u ? a ∈ T)
T is progressing T is hereditary

∀u (u ∈ T → ∃a u ? a ∈ T) ∀u ((∀a u ? a ∈ T)→ u ∈ T)

Dual concepts on dual predicates
ill-foundedness-style well-foundedness-style

Intensional concepts
T has unbounded paths T is uniformly barred

∀n∃u (|u| = n ∧ ∀v (v ≤ u→ v ∈ T)) ∃n∀u (|u| = n→ ∃v (v ≤ u ∧ v ∈ T))
T is staged infinite1 T is staged barred1

∀n∃u (|u| = n ∧ u ∈ T) ∃n∀u (|u| = n→ u ∈ T)
T is a spread T is resisting1

〈〉 ∈ T ∧ T progressing T hereditary→ 〈〉 ∈ T
pruning of T adherence1 of T

νX.λu.(u ∈ T ∧ ∃a u ? a ∈ X) µX.λu.(u ∈ T ∨ ∀a u ? a ∈ X)

T is productive1 T is inductively barred
〈〉 ∈ pruning of T 〈〉 ∈ adherence of T

Observational concepts
T has an infinite branch T is barred

∃α ∀u (u initial segment of α→ u ∈ T) ∀α ∃u (u initial segment of α ∧ u ∈ T)
Different equivalences will be stated about the intensional definitions, under either a classical

(i.e. interpreting ∃ classically), intuitionistic (i.e. interpreting ∃ intuitionistically), or linear
reading (i.e. additionally interpreting→ as a linear arrow and conjunction as a tensor product).
(Note 1: not being aware of an established terminology, we use here our own terminology.)

Then, we shall take the definition of inductively barred, productive, having an infinite branch
and barred as references and, for T over A∗, define:

Tree-based choice principles and bar induction principles

(A variant of) Dependent Choice (DC prod) Bar Induction (BI ind)

T is productive → T has an infinite branch T barred → T inductively barred

The naive generalisation to the non-countable case leads to the following definitions which
satisfy the logical equivalences of the introduction, where ↓T and ↑T denote respectively the
tree and monotone closures of a predicate T over (A×B)∗, and ≺ is finitely approximating:

Dual concepts on dual predicates

ill-foundedness-style well-foundedness-style

Intensional concepts

T coinductively A-B-choosable from u T inductively A-B-barred from u

νX.λu.


 u ∈↓T
∧∀ a /∈ dom(u) ∃b u ? (a, b) ∈ X


 µX.λu.


 u ∈↑T
∨∃ a /∈ dom(u) ∀b u ? (a, b) ∈ X




Extensional concepts

T is A-B-choosable T is A-B-barred

∃α ∈ (A→ B) ∀u (u ≺ α→ u ∈ T) ∀α ∈ (A→ B) ∃u (u ≺ α ∧ u ∈ T)

Dual axioms

Naive Filtered Axiom of Choice (ACFnaive
ABT) Naive Generalized Bar Induction (GBI naive

ABT)

T coinductively A-B-choosable from 〈〉 implies T A-B-choosable T A-B-barred implies T inductively A-B barred from 〈〉
Unfortunately, the naive form of ACFABT and GBIABT is conjectured inconsistent. We

shall then propose an alternative to make it exactly the strength of the general axiom of choice
while preserving the logical equivalences obtained by restricting A, B or T .

On the Proof Theory of Property-Based Testing of
Coinductive Specifications, or:
PBT to Infinity and beyond

Roberto Blanco1, Dale Miller2, and Alberto Momigliano3

1 INRIA Paris, France
2 INRIA Saclay & LIX, École Polytechnique, France

3 DI, Università degli Studi di Milano, Italy

Reasoning about infinite computations via coinduction and corecursion has an ever increas-
ing relevance in formal methods and, in particular, in the semantics of programming languages,
starting from [16]; see also [13] for a compelling example — and, of course, coinduction un-
derlies (the meta-theory of) process calculi. This was acknowledged by researchers in proof
assistants, who promptly provided support for coinduction and corecursion from the early 90’s
on, see [19, 10] for the beginning of the story concerning the most popular frameworks.

It also became apparent that tools that search for refutations/counter-examples of conjec-
tures prior to attempting a formal proof are invaluable: this is particularly true in PL theory,
where proofs tend to be shallow but may have hundreds of cases. One such approach is property-
based testing (PBT), which employs automatic test data generation to try and refute executable
specifications. Pioneered by QuickCheck for functional programming [7], it has now spread to
most major proof assistants [4, 18].

In general, PBT does not extend well to coinductive specifications (an exception being
Isabelle’s Nitpick, which is, however, a counter-model generator). A particular challenge, for
example, for QuickChick is extending it to work with Coq’s notion of coinductive via guarded
recursion (which is generally seen to be an unsatisfactory approach to coinduction). We are not
aware of applications of PBT to other form of coinduction, such as co-patterns [1].

While PBT originated in the functional programming community, we have given in a previ-
ous paper ([5]) a reconstruction of some of its features (operational semantics, different flavors
of generation, shrinking) in purely proof-theoretic terms employing the framework of Founda-
tional Proof Certificates [6]: the latter, in its full generality, defines a range of proof structures
used in various theorem provers such as resolution refutations, Herbrand disjuncts, tableaux,
etc. In the context of PBT, the proof theory setup is much simpler. Consider an attempt to
find counter-examples to a conjecture of the form ∀x[(τ(x)∧P (x)) ⊃ Q(x)] where τ is a typing
predicate and P and Q are two other predicates defined using Horn clause specifications. By
negating this conjecture, we attempt to find a (focused) proof of ∃x[(τ(x) ∧ P (x)) ∧ ¬Q(x)].
In the focused proof setting, the positive phase (where test cases are generated) is represented
by ∃x and (τ(x) ∧ P (x)). That phase is followed by the negative phase (where conjectured
counter-examples are tested) and is represented by ¬Q(x). FPCs are simple logic programs
that guide the search for potential counter-examples using different generation strategies; they
further capture diverse features such as δ-debugging, fault isolation, explanation, etc. Such
a range of features can be programmed as the clerks and experts predicates that decorate the
sequent rules used in a FPC proof checking kernel: the kernel is also able to do a limited amount
of proof reconstruction.

As explained in [5], the standard PBT setup needs little more than Horn logic. However,
when addressing infinite computations, we need richer specifications. While coinductive logic
programming, see [21] and [3] for a much more principled and in depth treatment, may at first

PBT to Infinity and beyond Blanco, Miller and Momigliano

seem to fit the bill, the need to model infinite behavior rather than infinite objects, that is
(ir)rational terms on the domain of discourse, has lead us to adopt a much stronger logic (and
associated proof theory) with explicit rules for induction and coinduction.

A natural choice for such a logic is the fixed point logic G [9] and its linear logic cousin
µMALL [2], which are associated to the Abella proof assistant and the Bedwyr model-checker.
In fact, the latter has already been used for related aims [11].

To make things more concrete, consider the usual rules for CBV evaluation in the λ-calculus
with constants, but define it coinductively, following see [13]: using Bedwyr’s concrete syntax,
this is written as:

Define coinductive coeval: tm -> tm -> prop by
coeval (con C) (con C);
coeval (fun R) (fun R);
coeval (app M N) V :=

exists R W, coeval M (fun R) /\ coeval N W /\ coeval (R W) V.

Is evaluation still deterministic? And if not, can we find terms E, V1, and V2 such that
coeval E V1 /\ coeval E V2 /\ (V1 = V2 -> false)?1 Indeed we can, since a divergent
term such as Ω co-evaluates to anything. In fact, co-evaluation is not even type sound in its
generality. Our PBT approach aims to find such counter-examples.

It can also be used to separate various notion of equivalences in lambda and process calculi:
for example, separating applicative and ground similarity in PCFL [20], or analogous standard
results in the π-calculus. While analogous goals have been achieved for labeled transition
systems and for CCS (using, for example, the Concurrency Workbench), it is a remarkable
feature of the proof-theoretic account that is easy to generalizes PBT from a system without
bindings (say, CCS) to a system with bindings (say, the π-calculus). Such ease is possible since
proof theory accommodates the λ-tree syntax approach to treating bindings [14]: this approach
includes the ∇ quantifier [15] that appears in both Abella and Bedwyr.

In our current setup, we attempt to find counter-examples, using Bedwyr to execute both the
generation of test cases (controlled by using specific FPCs [5]) and the testing phase. Such an
implementation of PBT has the advantages of allowing us to piggyback on Bedwyr’s facilities for
efficient proof search via tabling for (co)inductive predicates. There are a couple of treatments
of the negation in the testing phase. One approach to eliminating negation from intuitionistic
specification can be based on the techniques in [17]. Another approach identifies the proof
theory behind model checking as the linear logic µMALL [12] and in that setting, negations
can be eliminated by using De Morgan duality (and inequality).

References
[1] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: programming infinite structures

by observations. In POPL, pages 27–38. ACM, 2013.
[2] D. Baelde. Least and greatest fixed points in linear logic. ACM Trans. Comput. Log., 13(1):2:1–

2:44, 2012.
[3] H. Basold, E. Komendantskaya, and Y. Li. Coinduction in uniform: Foundations for corecursive

proof search with horn clauses. In ESOP, volume 11423 of Lecture Notes in Computer Science,
pages 783–813. Springer, 2019.

1In this case equality is purely syntactical, since by construction terms will be ground when compared, but
the logic implements a richer notion [8].

2

PBT to Infinity and beyond Blanco, Miller and Momigliano

[4] J. C. Blanchette, L. Bulwahn, and T. Nipkow. Automatic proof and disproof in Isabelle/HOL.
In C. Tinelli and V. Sofronie-Stokkermans, editors, FroCoS, volume 6989 of Lecture Notes in
Computer Science, pages 12–27. Springer, 2011.

[5] R. Blanco, D. Miller, and A. Momigliano. Property-based testing via proof reconstruction. In
PPDP, pages 5:1–5:13. ACM, 2019.

[6] Z. Chihani, D. Miller, and F. Renaud. A semantic framework for proof evidence. J. of Automated
Reasoning, 59(3):287–330, 2017.

[7] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing of Haskell programs.
In Proceedings of the 2000 ACM SIGPLAN International Conference on Functional Programming
(ICFP 2000), pages 268–279. ACM, 2000.

[8] A. Gacek, D. Miller, and G. Nadathur. Nominal abstraction. Inf. Comput., 209(1):48–73, 2011.
[9] A. Gacek, D. Miller, and G. Nadathur. A two-level logic approach to reasoning about computations.

Journal of Automated Reasoning, 49(2):241–273, Aug 2012.
[10] E. Giménez. Codifying guarded definitions with recursion schemes. In P. Dybjer and B. Nordström,

editors, Selected Papers 2nd Int. Workshop on Types for Proofs and Programs, TYPES’94, Båstad,
Sweden, 6–10 June 1994, volume 996 of Lecture Notes in Computer Science, pages 39–59. Springer-
Verlag, Berlin, 1994.

[11] Q. Heath and D. Miller. A framework for proof certificates in finite state exploration. In
PxTP@CADE, volume 186 of EPTCS, pages 11–26, 2015.

[12] Q. Heath and D. Miller. A proof theory for model checking. J. Autom. Reasoning, 63(4):857–885,
2019.

[13] X. Leroy and H. Grall. Coinductive big-step operational semantics. Information and Computation,
207(2):284–304, 2009.

[14] D. Miller. Mechanized metatheory revisited. Journal of Automated Reasoning, Oct. 2018.
[15] D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. on Computational Logic,

6(4):749–783, Oct. 2005.
[16] R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical Computer Science,

87(1):209–220, 1991.
[17] A. Momigliano. Elimination of negation in a logical framework. In CSL, volume 1862 of Lecture

Notes in Computer Science, pages 411–426. Springer, 2000.
[18] Z. Paraskevopoulou, C. Hritcu, M. Dénès, L. Lampropoulos, and B. C. Pierce. Foundational

property-based testing. In C. Urban and X. Zhang, editors, Interactive Theorem Proving - 6th
International Conference, ITP 2015, Proceedings, volume 9236 of Lecture Notes in Computer
Science, pages 325–343. Springer, 2015.

[19] L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic. Journal of Logic
and Computation, 7(2):175–204, Apr. 1997.

[20] A. M. Pitts. Operationally Based Theories of Program Equivalence. In P. Dybjer and A. M. Pitts,
editors, Semantics and Logics of Computation, 1997.

[21] L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-logic programming: Extending logic program-
ming with coinduction. In L. Arge, C. Cachin, T. Jurdziński, and A. Tarlecki, editors, Automata,
Languages and Programming, pages 472–483, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

3

Duality in intuitionistic propositional logic
Paweł Urzyczyn

Institute of Informatics, University of Warsaw, Poland
urzy@mimuw.edu.pl

Abstract
It is known that provability in propositional intuitionistic logic is Pspace-complete.
As Pspace is closed under complements, there must exist a Logspace-reduction from
refutability to provability. We describe a direct translation below: given a formula ϕ, we
define ϕ so that ϕ is provable iff ϕ is not.

Preliminaries

We consider propositional formulas built from the connectives ∧, ∨, → and ⊥. Negation ¬α is
defined as α → ⊥. We assume that implication is right-associative, i.e., we write α → β → γ
for α → (β → γ). If S = {α1, . . . , αk} then S → β abbreviates any formula of the form
α1 → · · · → αk → β (disregarding the order of premises). Variables and ⊥ are atoms.

We use an indexed version of cut-free sequent calculus to derive judgments of the form
Γ `t α, where Γ is a set of formulas, α is a formula, and t is a natural number. The meaning
of `t is that the depth of the proof does not exceed t.

Γ, α `t α (Ax) Γ,⊥ `t α (L⊥)

Γ, γ, δ, γ ∧ δ `t α
(L∧)

Γ, γ ∧ δ `t+1 α

Γ `t γ Γ `t δ
(R∧)

Γ `t+1 γ ∧ δ
Γ, γ, γ ∨ δ `t α Γ, δ, γ ∨ δ `t α

(L∨)
Γ, γ ∨ δ `t+1 α

Γ `t γ
(R∨)

Γ `t+1 γ ∨ δ
Γ `t δ

Γ `t+1 γ ∨ δ
Γ, γ → δ `t γ Γ, γ → δ, δ `t α

(L→)
Γ, γ → δ `t+1 α

Γ, γ `t δ
(R→)

Γ `t+1 γ → δ

The system above is sound and complete: a judgment Γ ` α is provable in the standard sense
iff Γ `n2 α, where n is the number of all subformulas occurring in Γ, α.

The construction

In what follows we fix a formula ϕ and we define a formula ϕ to satisfy the equivalence:
` ϕ ⇔ 0 ϕ. (*)

Assume that ϕ is of length n and let S be the set of all subformulas of ϕ. Then S has at most n
elements. Define N = n2 and T = {0, . . . , N}.

For every α, β ∈ S, and every t ∈ T , the following propositional symbols occur in ϕ:
– Dα,t – “Disprove α in t steps”
– Aα,t – “Assumption α not added at time t”
– Xα,t – “Axiom not able to derive α at time t”
– Rα,t – “Right rule not able to derive α at time t”
– Lα,β,t – “Left rule for β not able to derive α at time t”

Duality in IPC Urzyczyn

Let At = {Aα,t | α ∈ S}, At\β = {Aα,t | α ∈ S ∧ α 6= β}, At\βγ = {Aα,t | α ∈ S ∧ α 6= β, γ}.
Then define Aα,t↑ = {Aα,u | u ≥ t} and A∆,t↑ =

⋃{Aα,t↑ | α 6∈ ∆}, when ∆ ⊆ S.
The formula ϕ has the form Γ → Dϕ,N , where Γ is the set consisting of the implicational

formulas listed below. First, all formulas of the form Aα,0↑ ∪ A⊥,0↑ → Dα,0, as well as all the
atoms Aα,N belong to Γ. Then, for t > 0:
• For every α ∈ S, we have Mα,t → Dα,t ∈ Γ, where Mα,t is the set of the following

propositional variables:
– Xα,t ;
– Lα,β,t, for any non-variable β ∈ S, including the case β = ⊥;
– Rα,t, in case α is not an atom.

• Formulas Aα,t↑ → Xα,t belong to Γ.
• If α = γ ∧ δ then (At−1 → Dγ,t−1)→ Rα,t and (At−1 → Dδ,t−1)→ Rα,t belong to Γ.
• If α = γ ∨ δ then (At−1 → Dγ,t−1)→ (At−1 → Dδ,t−1)→ Rα,t is in Γ.
• If α = γ → δ then (At−1\γ → Dδ,t−1)→ Rα,t belongs to Γ.
• Every formula Aβ,t↑ → Lα,β,t is in Γ.
• If β = γ ∧ δ then (At−1\γδ → Dα,t−1)→ Lα,β,t is in Γ.
• If β = γ ∨ δ then (At−1\γ→Dα,t−1)→ Lα,β,t, and (At−1\δ→Dα,t−1)→ Lα,β,t are in Γ.
• If β = γ → δ then (At−1→Dγ,t−1)→ Lα,β,t and (At−1\δ→Dα,t−1)→ Lα,β,t are in Γ.

Lemma 1. For every t ∈ T , every ∆ ⊆ S, and every α ∈ S:
∆ 0t α ⇐⇒ Γ,A∆,t↑ ` Dα,t.

The main equivalence (*) follows for ∆ = ∅, α = ϕ, and t = N . (Note that A∅,N↑ ⊆ Γ.)

Comments:
– Works like [2, 1] introduce systems of rules to derive refutability. We propose an alternative:
rather than introducing new rules, we apply the old ones to a different task.
– The construction uses an explicit counting from 0 to n2. It can be reduced down to n: we
will do it in the final version of this paper.
– Provability in IPC can be represented by monotone alternating automata, essentially imple-
menting the games of [3]. The above construction can therefore be simplified as complementa-
tion for such automata.
– The formula ϕ (and any simple encoding of a monotone automaton) uses only implication and
is of order (depth) at most 3. This gives yet another argument that for every formula ϕ, there
is a formula ψ of order 3 such that ϕ is provable iff so is ψ. The formula ψ is not equivalent
to ϕ, but is computable in logarithmic space (an analogy to Cnf-Sat).
– Having the decision problem reduced in Logspace to simple formulas, one can consider vari-
ous simplifications/heuristics (like joining and deleting some components), working towards an
intuitionistic analogue of Davis-Putnam algorithm.

References
[1] Camillo Fiorentini and Mauro Ferrari. A forward unprovability calculus for intuitionistic proposi-

tional logic. In R. A. Schmidt and C. Nalon, editors, Proc. TABLEAUX 2017, volume 10501 of
LNAI, pages 114–130. Springer, 2017.

[2] Luis Pinto and Roy Dyckhoff. Loop-free construction of counter-models for intuitionistic proposi-
tional logic. In R. Behara, M. Fritsch and R.G. Lintz, editors, Symposia Gaussiana, Conf. A, 1993,
pages 225—-232. De Gruyter, 1995.

[3] Paweł Urzyczyn. Intuitionistic games: Determinacy, completeness, and normalization. Studia
Logica, 104(5):957–1001, 2016.

2

7 Formalizing mathematics with types (WG4)

93

Mechanized Undecidability Results
for Propositional Calculi

Andrej Dudenhefner

Saarland University, Saarland Informatics Campus, Saarbrücken, Germany
dudenhefner@ps.uni-saarland.de

Introduction The line of work on decidability of propositional, possibly sub-intuitionistic,
Hilbert-style calculi was motivated by Tarski in 1946. Historically, the most prominent results
include undecidability theorems by Linial and Post [11] published in 1949. Subsequently, a
variety of problems regarding propositional calculi (for an overview see [17]) was studied. A
well-known positive result is that provability in intuitionistic propositional implicational logic,
i.e. the calculus having as axioms a → b → a and (a → b → c) → (a → b) → a → c, is
Pspace-complete [15]. Complementarily, Singletary [14] proved in 1974 that there exists a
purely implicational propositional calculus which can represent any r.e. degree.

Modern results [5, 6] show that problems of recognizing axiomatizations and completeness
are undecidable for propositional calculi containing the axiom a → b → a. Such calculi can
be understood as simply typed [9, 3] combinatory logics [2, 10] exposing an undecidable type
inhabitation problem. Notably, modern results sometimes include a mechanization of the main
argument (in case of [6] using the Lean [12] proof assistant).

This work gives fully constructive, mechanized (in the Coq proof assistant) synthetic many-
one reductions from the Turing machine halting problem (Halt) to the following two problems.
First, provability of a given proposition in a fixed implicational propositional calculus. Second,
provability of a fixed proposition in a given implicational propositional calculus.

Preliminaries Propositions s, t are defined as s, t ∈ F ::= a | s → t, where a ∈ A ranges
over atoms. A substitution ζ : A → F is lifted to propositions by ζ(s → t) = ζ(s) → ζ(t). An
environment Γ is a finite set of propositions. A proposition t is derivable from Γ, if there is a
proposition s in Γ and substitution ζ such that t = ζ(s), or there is a proposition s such that
both propositions s and s → t are derivable from Γ. Clearly, derivability of a proposition s in
Γ corresponds to provability of s in a Hilbert-style calculus having propositions in Γ as axioms.

This work revisits undecidability of the following two problems.

Problem 1. Let Γ be an environment. Given a proposition t, is t derivable from Γ?

Problem 2. Let t be a proposition. Given an environment Γ, is t derivable from Γ?

The main contribution improves upon existing work in the following two aspects.
• The given argument is fully constructive.
• The given argument is mechanized (in the Coq proof assistant) as part of a uniform

framework of computational reductions in Coq [8, 7].
Relying on the infrastructure of the existing framework provides an advantage. For it suffices
to reduce an existing, more convenient problem (called a seed in the framework) to a target
problem in order to obtain a comprehensive reduction from Halt to the target problem.

The relevant Coq development can be found at [1] and is currently being integrated into [8],
containing a suitable seed. The above preliminaries are mechanized in HSC/HSC_prelim.v. Deriv-
ability is mechanized as the inductive predicate hsc (Gamma: list formula) : formula -> Prop.

Provability in Propositional Calculi Dudenhefner

Synthetic Many-one Reductions The notion of synthetic reducibility [7] is based on syn-
thetic computability theory [4]. The key insight is that in the convenient language of construc-
tive type theory, proofs are computable functions that can be used to both describe and verify
reductions between decision problems. This avoids an explicit construction of Turing machines,
which are formally required for such reductions. Synthetic many-one reducibility of a predicate
p : X -> Prop to a predicate q : Y -> Prop is mechanized in Reduction.v as
Definition reduces X Y (p : X -> Prop) (q : Y -> Prop) :=

exists f : X -> Y, forall x, p x <-> q (f x).
Notation "p � q" := (reduces p q) (at level 50).

Fundamentally, Halt � q describes the undecidability of q.

Derivability from a Fixed Environment Akin to the result by Singletary [14], we explic-
itly give an environment Γ (mechanized as ΓPCP in BMPCP_to_HSC_PRV.v) such that it is undecidable,
whether a given proposition s is derivable from Γ (mechanized as HSC_PRV ΓPCP : formula -> Prop).
Concretely, we reduce the binary modified Post correspondence problem [13] (BMPCP), a seed
mechanized as BMPCP in PCP/PCP.v, to derivability in Γ. The particular synthetic many-one re-
duction is mechanized in BMPCP_to_HSC_PRV.v as
Theorem BMPCP_to_HSC_PRV : BMPCP � HSC_PRV ΓPCP.

The key idea is to encode state transition, where state is a pair ((Q,P), (x, y)) such that P is
the list of word pairs given by the BMPCP instance, Q is a suffix of P , and x, y are constructed
by respective repeated concatenation of words from P . The fixed environment Γ consists of en-
codings of state transitions in accordance with the search for a solution of an arbitrary instance
of BMPCP. Overall, a BMPCP instance ((v, w), P) is solvable iff the proposition encoding the
state ((((v, w)+P), ((v, w)+P)), (v, w)) is derivable from Γ. Notably, axioms in Γ are derivable
from the single axiom a→ b→ a.

From the existing infrastructure of the framework we obtain the following result for free
Theorem HSC_PRV_undec : Halt � HSC_PRV ΓPCP.

Derivability of a Fixed Proposition Considering the environment as problem input, some-
times called relativized provability, is related to the problem of recognizing axiomatizations of
a fixed theory. Therefore, as a starting point, we use the mechanization of the main argument
for undecidability of recognizing axiomatizations of a calculus having a → b → a as its only
axiom [6]. In particular, whether from a given environment Γ the fixed proposition a→ b→ a
is derivable (mechanized as HSC_AX in HSC/HSC_AX.v). The key idea, again, is to encode solvability
of BMPCP such that both state transition and input is encoded in the environment (for details
see [6]). Notably, the constructed environment contains only axioms derivable from a→ b→ a.

Traditional argumentation [11, 16, 5, 6] and its mechanization relies on the (non-computable)
principle of excluded middle. However, in the setting of synthetic reductions, it is not obvi-
ous to what extent the use of non-computable principles is legitimate. This work provides a
constructive reformulation, similar to continuation passing, of the development from [6]. Sur-
prisingly, the code size of the resulting Coq development is only half that of the original Lean
development. This is partly due to a more concise ssreflect-style proofs and the lia tactic for
integer arithmetic. The result is mechanized in BMPCP_to_HSC_AX.v as
Theorem BMPCP_to_HSC_AX : BMPCP � HSC_AX.

Again, the framework readily provides
Theorem HSC_AX_undec : Halt � HSC_AX.

2

Provability in Propositional Calculi Dudenhefner

References
[1] Andrej Dudenhefner. Mechanized Reductions from the Binary Modified Post Corre-

spondence Problem to Problems for Propositional Calculi. https://github.com/uds-psl/
2020-types-propositional-calculi. Accessed: 2020-02-03.

[2] Hendrik P. Barendregt. The Lambda Calculus. Its Syntax and Semantics. Studies in Logic and
the Foundations of Mathematics, 2nd Edition. Elsevier Science Publishers, 1984.

[3] Hendrik P. Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types. Per-
spectives in Logic, Cambridge University Press, 2013.

[4] Andrej Bauer. First Steps in Synthetic Computability Theory. Electr. Notes Theor. Comput. Sci.,
155:5–31, 2006.

[5] Grigoriy V. Bokov. Undecidable problems for propositional calculi with implication. Logic Journal
of the IGPL, 24(5):792–806, 2016.

[6] Andrej Dudenhefner and Jakob Rehof. Lower End of the Linial-Post Spectrum. In Andreas Abel,
Fredrik Nordvall Forsberg, and Ambrus Kaposi, editors, 23rd International Conference on Types
for Proofs and Programs, TYPES 2017, May 29-June 1, 2017, Budapest, Hungary, volume 104 of
LIPIcs, pages 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[7] Yannick Forster, Edith Heiter, and Gert Smolka. Verification of PCP-Related Computational
Reductions in Coq. In Interactive Theorem Proving - 9th International Conference, ITP 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings,
pages 253–269, 2018.

[8] Yannick Forster, Dominique Larchey-Wendling, Andrej Dudenhefner, Edith Heiter, Dominik Kirst,
Fabian Kunze, Gert Smolka, Simon Spies, Dominik Wehr, and Maximilian Wuttke. A Coq Library
of Undecidable Problems. In The Sixth International Workshop on Coq for Programming Languages
(CoqPL 2020), 2020.

[9] J. Roger Hindley. Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer Science,
vol. 42, Cambridge University Press, 2008.

[10] J. Roger Hindley and Jonathan P. Seldin. Lambda-calculus and Combinators, an Introduction.
Cambridge University Press, 2008.

[11] Samuel Linial and Emil L. Post. Recursive Unsolvability of the Deducibility, Tarski’s Complete-
ness and Independence of Axioms Problems of Propositional Calculus. Bulletin of the American
Mathematical Society, 55:50, 1949.

[12] Microsoft Research. The Lean Proof Assistant. https://leanprover.github.io/. Accessed:
2020-01-07.

[13] Emil L. Post. A variant of a recursively unsolvable problem. Bulletin of the American Mathematical
Society, 52(4):264–268, 1946.

[14] Wilson E. Singletary. Many-one Degrees Associated with Partial Propositional Calculi. Notre
Dame Journal of Formal Logic, XV(2):335–343, 1974.

[15] Richard Statman. Intuitionistic Propositional Logic Is Polynomial-space Complete. Theoretical
Computer Science, 9:67–72, 1979.

[16] Mary K. Yntema. A detailed argument for the Post-Linial theorems. Notre Dame Journal of
Formal Logic, 5(1):37–50, 1964.

[17] Evgeny Zolin. Undecidability of the Problem of Recognizing Axiomatizations of Superintuitionistic
Propositional Calculi. Studia Logica, 102(5):1021–1039, 2014.

3

Towards Extraction of Continuity Moduli in Coq

Yannick Forster1, Dominik Kirst1, and Florian Steinberg2

1 Saarland University
Saarland Informatics Campus, Saarbrücken, Germany

{forster,kirst}@ps.uni-saarland.de
2 INRIA Saclay
Paris, Framce

fsteinberg@gmail.com

Abstract

We report on a work-in-progress extraction of continuity information for Coq function-
als on Baire space, i.e. of type (N → N) → N. The extraction is implemented as a MetaCoq
plugin and generates a certified modulus function, given a term in the System T fragment
of Coq. In fact, the extraction first reifies Coq definitions into a syntactic representation
of System T and subsequently employs a constructive and informative continuity theorem
for System T following Escardó.

It is a well-studied property of constructive mathematics that the functions definable in a
purely constructive setting à la Bishop are computable. As a consequence, definable functions
over Baire space into natural numbers are continuous.

The latter has been established explicitly for various phrasings of constructive mathematics,
for instance Gödel’s System T, expressing the primitive recursive functions of finite types. For
more profound constructive foundations, such as the dependent type theory underlying the
Coq proof assistant, it is clear that at least T-definable functions can be shown continuous in
the system itself. We provide a first step towards exploiting such continuity information by
implementing a plugin for automatically extracting the modulus of continuity of T-definable
Coq functionals of type (N→ N)→ N.

Such a functional f on Baire space is called continuous if it only accesses finitely many
positions of every input sequence α : N → N, i.e. if there is a function µf : (N → N) → L(N)
such that for every α it holds that f α = f β for every β agreeing with α on the positions
listed in µf α. The function µf is called the modulus of continuity of f and can be extracted
for all T-definable Coq functionals by first reifying into a syntactic representation of System T
(Section 2) using the MetaCoq framework [3] and then executing a constructive and informative
continuity proof for System T (Section 1) as implemented by Escardó in Agda [1]. The Coq
code is available at https://www.ps.uni-saarland.de/extras/modulus-extraction/.

1 Extracting Continuity Moduli from System T

We follow Escardó’s Agda development [1] to implement a Coq procedure that computes and
verifies the modulus of continuity for T-definable functionals, i.e. functionals that are the
denotation of a term of System T. Using standard techniques from programming language
semantics, Escardó gives a compact mechanisation that straightforwardly translates to Coq. As
intended for the calculus of constructions at the core of Coq’s type theory, most of the logical
statements from the Agda proof can be placed in the (impredicative) propositional universe P
while only the definition of continuity remains in the (predicative) computational hierarchy T,
so that the modulus function can be extracted. Moreover, as in Escardó’s proof, we rely on an
intrinsically typed Church-style representation of System T, i.e. do not model untyped syntax.

Towards Extraction of Continuity Moduli in Coq Forster, Kirst, Steinberg

2 A Modulus Extraction Plugin

We utilise MetaCoq to reify Coq’s System T fragment syntactically into an inductive type rep-
resenting untyped System T syntax, reminiscent of reification into the untyped λ-calculus [2].
MetaCoq provides an inductive type Ast.term mirroring the OCaml datatype used to imple-
ment Coq and a monad TemplateMonad which can be used to access effects like unfolding of
names, quoting a Coq term into its Ast.term representation or unquoting an Ast.term repre-
sentation back into a Coq term.

Our plugin thus first calls a monadic program Reify translating from Ast.term into Sys-
tem T. Monadic programs can be executed using a vernacular command. To execute Reify,
a user can type MetaCoq Run (Reify r f) to reify f into System T automatically and add
the result to the environment as definition named r. The reification function is essentially the
(partial) identity, just renaming constructors of Coq (e.g. Coq’s application Ast.tApp) into
constructors of a type SystemT.term representing untyped System T (e.g. SystemT.app). The
two datatypes are displayed below, the alignment hints at how the translation works:

Module Ast.

Inductive term : Set :=

| tRel : nat -> term

| tConstruct : inductive -> nat ->

universe_instance -> term

| tFix : mfixpoint term -> nat -> term

| tLambda : name -> term -> term -> term

| tApp : term -> term -> term

(* ... *).

End Ast.

Module SystemT.

Inductive term : Type :=

| var : nat -> term

| zero : term

| succ : term

| rec : type -> term

| lambda : type -> term -> term

| app : term -> term -> term.

End SystemT.

As a second step, we translate the untyped System T representation to the intrinsically typed
representation for the continuity proof by calling a certified type inference procedure for T.
In the last step, we utilise the continuity theorem for System T from above to implement a
plugin function called ExtractModulus. Given a Coq term f of the expected type, it reifies the
functional into System T, infers typing information, employs the continuity theorem, and checks
that the denotation of the System T representation is indeed the initial functional. The plugin
can be called as MetaCoq Run (ExtractModulus mod f) where the modulus of f is saved as
the definition mod together with a proof that it indeed is the modulus of continuity.

3 Future Directions

We see the current implementation as ground for further investigations in the extraction of
continuity information in Coq. In the current state, the plugin has hardly any practical appli-
cations. To make it useful in applications like computable real analysis [5] we want to extend
to more base types in System T like B, sums, pairs, lists, or rational numbers.

Furthermore, Coq functions are mostly defined using a match/fix representation of recursion
instead of a explicit eliminators, which our reification cannot yet deal with.

MetaCoq allows users to verify plugins in principle. For our plugin, this would mainly be
a verification of the reification function, which would be eased by relying on the verified type
inference function for Coq [4].

Lastly, we would like to investigate the continuity notion and proofs for T-functions of higher
type as in [6] and for larger fragments of Coq including dependent and informative types.

2

Towards Extraction of Continuity Moduli in Coq Forster, Kirst, Steinberg

References

[1] M. Escardó. Continuity of Gödel’s System T definable functionals via effectful forcing. Electronic
Notes in Theoretical Computer Science, 298:119–141, 2013.

[2] Y. Forster and F. Kunze. A Certifying Extraction with Time Bounds from Coq to Call-By-Value
Lambda Calculus. In 10th International Conference on Interactive Theorem Proving (ITP 2019),
volume 141 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:19. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[3] M. Sozeau, A. Anand, S. Boulier, C. Cohen, Y. Forster, F. Kunze, G. Malecha, N. Tabareau, and
T. Winterhalter. The MetaCoq Project. June 2019.

[4] M. Sozeau, S. Boulier, Y. Forster, N. Tabareau, and T. Winterhalter. Coq Coq correct! verification
of type checking and erasure for Coq, in Coq. Proceedings of the ACM on Programming Languages,
4(POPL):8, 2020.

[5] F. Steinberg, L. Théry, and H. Thies. Quantitative Continuity and Computable Analysis in Coq.
In 10th International Conference on Interactive Theorem Proving (ITP 2019), volume 141 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 28:1–28:21. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2019.

[6] C. Xu. A syntactic approach to continuity of T-definable functionals, 2019.

3

Constructing Higher Inductive Types as Groupoid

Quotients

Niels van der Weide

Radboud University, Nijmegen, The Netherlands
nweide@cs.ru.nl

The Martin-Löf identity type, also known as propositional equality, represents provable
equality in type theory [9]. This type is defined polymorphically over all types and has a
single introduction rule representing reflexivity. The eliminator, often called the J-rule or path
induction, is used to prove symmetry and transitivity. Note that in particular, we can talk
about the identity type of an already established identity type. This can be iterated to obtain
an infinite tower of types, which has the structure of an ∞-groupoid [8, 12].

The J-rule is also the starting point of homotopy type theory [11]. In that setting, types are
seen as spaces, inhabitants are seen as points, proofs of identity are seen as paths, and paths
between paths are seen as homotopies. In mathematical terms, type theory can be interpreted
using simplicial sets [6]. In the resulting model, not every inhabitant of the identity type is
equal to reflexivity.

Assuming the univalence axiom, we can construct types for which we can prove that not
every two inhabitants of the identity type are equal. One example is the universe [11] while
other examples can be obtained by using higher inductive types (HITs).

Higher inductive types (HITs) generalize inductive types by allowing constructors for paths,
paths between paths, and so on. While inductive types are specified by giving the arities of
the operations [3], for higher inductive types one must also specify the arities of the paths,
paths between paths, and so on. The resulting higher inductive type is freely generated by the
provided constructors. To make this concrete, let us look at some examples [11]:

Inductive S1 :=
| baseS1 : S1

| loopS1 : baseS1 = baseS1

Inductive T 2 :=
| base : T 2

| loopl, loopr : base = base
| surf : loopl • loopr = loopr • loopl

The first one, S1, represents the circle. It is generated by a point constructor baseS1 : S1

and a path constructor loopS1 : baseS1 = baseS1 . The second one, T 2, represents the torus.
This type is generated by a point constructor base, two path constructors loopl and loopr of
type base = base, and a homotopy constructor surf : loopl • loopr = loopr • loopl where
p • q denotes the concatenation of p and q. Note that constructors depend on previously given
constructors in the specification. For both types, introduction, elimination, and computation
rules can be given [11].

In this talk, we study a schema of higher inductive types that allows defining types by
giving constructors for the points, paths, and homotopies. All of these constructors can be
recursive, but they can only have a finite number of recursive arguments. To guarantee that all
constructors are finitary, we use finitary polynomials. Note that recursion is necessary to cover

Constructing Higher Inductive Types as Groupoid Quotients Van der Weide

examples such as W-types, the set truncation, algebraic theories, and the integers. A similar
scheme was studied by Dybjer and Moeneclaey and they interpret HITs on this scheme in the
groupoid model [4]. Kaposi and Kovács study a more general scheme of HITs [5].

Say that a type X is 1-truncated if for all x, y : X, p, q : x = y, and r, s : p = q we have
r = s, and a 1-type is a type which is 1-truncated. An example of a 1-type is the circle [7],
which we mentioned before. Groupoids are related to 1-types via the groupoid quotient [10],
which takes a groupoid G and returns 1-type whose points are objects of G and whose paths
are morphisms in G. Note that the type of univalent groupoids is equivalent to the type of
1-types [2].

The goal of this talk is to show that finitary 1-truncated higher inductive types can be derived
from simpler principles. More specifically, every finitary 1-truncated HIT can be constructed in
a type theory with propositional truncations, set quotients, and groupoid quotients. The result
of this talk can be used to simplify the semantic study of finitary 1-truncated HITs. Instead
of verifying the existence of a wide class of HITs, one only needs to check the existence of
propositional truncations and groupoid quotients.

For the proof, we use the following approach

1. We define within type theory an internal definition of signatures for HITs. These signa-
tures allow path and homotopy constructors.

2. For each signature, we define bicategories of algebras in both 1-types and groupoids.

3. Then we define displayed algebras and the induction principle for HITs. Note that the
induction principle only allows mapping to 1-types since we study 1-truncated HITs. We
follow that up by showing that biinitial algebras in 1-types satisfy the induction principle.

4. After that, we construct a biadjunction between the bicategories of algebras in 1-types
and algebras in groupoids.

5. We finish the proof by constructing the biinitial algebra in groupoids. From this, we get
that every signature has a HIT.

To construct the desired biadjunction, we make use of the displayed machinery introduced by
Ahrens et al. [1] and for this reason, we define the bicategories of algebras using displayed
bicategories. We also give the notion of displayed biadjunction and show that each displayed
biadjunction gives rise to a biadjunction between the total bicategories.
Formalization All results in this talk are formalized in Coq using the UniMath library [13].
The formalization can be found here:

https://github.com/nmvdw/GrpdHITs

Acknowledgments The author thanks Herman Geuvers, Dan Frumin, Niccolò Veltri, Benedikt
Ahrens, and Ali Caglayan for helpful comments and discussions.

References

[1] Benedikt Ahrens, Dan Frumin, Marco Maggesi, Niccoló Veltri, and Niels van der Weide. Bicate-
gories in univalent foundations. arXiv preprint arXiv:1903.01152v3v2, 2020.

[2] Benedikt Ahrens, Krzysztof Kapulkin, and Michael Shulman. Univalent categories and the Rezk
completion. Mathematical Structures in Computer Science, 25:1010–1039, 2015.

[3] Peter Dybjer. Inductive Families. Formal aspects of computing, 6(4):440–465, 1994.

2

Constructing Higher Inductive Types as Groupoid Quotients Van der Weide

[4] Peter Dybjer and Hugo Moeneclaey. Finitary higher inductive types in the groupoid model. Electr.
Notes Theor. Comput. Sci., 336:119–134, 2018.

[5] Ambrus Kaposi and András Kovács. A Syntax for Higher Inductive-Inductive Types. In 3rd
International Conference on Formal Structures for Computation and Deduction, FSCD 2018, July
9-12, 2018, Oxford, UK, pages 20:1–20:18, 2018.

[6] Chris Kapulkin and Peter LeFanu Lumsdaine. The Simplicial Model of Univalent Foundations
(after Voevodsky). Journal of the European Mathematical Society, 2018.

[7] Daniel R. Licata and Michael Shulman. Calculating the Fundamental Group of the Circle in
Homotopy Type Theory. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 223–232, 2013.

[8] Peter LeFanu Lumsdaine. Weak ω-categories from Intensional Type Theory. In International
Conference on Typed Lambda Calculi and Applications, pages 172–187. Springer, 2009.

[9] Per Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In Studies in Logic and the
Foundations of Mathematics, volume 80, pages 73–118. Elsevier, 1975.

[10] Kristina Sojakova. Higher Inductive Types as Homotopy-Initial Algebras, 2016.

[11] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[12] Benno van den Berg and Richard Garner. Types are Weak ω-Groupoids. Proceedings of the London
Mathematical Society, 102(2):370–394, 2011.

[13] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. Available at https://github.com/UniMath/UniMath.

3

Modular Confluence for Rewrite Rules in MetaCoq
Jesper Cockx1, Nicolas Tabareau2, and Théo Winterhalter2

1 TU Delft, Delft, Netherlands
2 Gallinette Project-Team, Inria, Nantes, France

Dependently typed languages provide strong guarantees of correctness for our programs and
proofs, but they can be hard to use and extend. To increase their practicability and expressivity,
they can be extended with user-defined rewrite rules [2]. For example, rewrite rules allow us
to define ‘parallel’ plus that reduces on both sides. It is defined by one symbol pplus and the
following rules:

m : N ` pplus 0 m _ m n,m : N ` pplus (S n) m _ S (pplus n m)
n : N ` pplus n 0 _ n n,m : N ` pplus n (S m) _ S (pplus n m)

Since rewrite rules are applied to expressions appearing at the type level, they interact directly
with the type system. Hence they can very easily break expected good properties of these systems,
e.g., termination, confluence, canonicity or subject reduction [3]. Among those, confluence is a
key ingredient to retain subject reduction and as such is essential.

We present a new criterion to ensure confluence of rewrite rules – and thus subject reduction
of the system – for the predicative calculus of cumulative inductive constructions (PCUIC) as
formalised in MetaCoq [6]. This criterion is modular : adding new rewrite rules that satisfy the
criterion again yields a confluent system without having to check new properties of pre-existing
rewrite rules. We have formalized this criterion in MetaCoq and extended the existing proof of
confluence. The proof however is not particular to the system and should adapt easily to other
settings such as Agda, allowing us to extend the Agda implementation [2] with a confluence
checker.

Rewrite rules in our setting. We extend PCUIC with blocks consisting of symbol decla-
rations and rewrite rules where the head of each rule is one of the locally defined symbols. A
rewrite rule is given as ∆ ` l _ r where:
• ∆ is the telescope of pattern variables, which should be the only free variables in l and r,

all pattern variables appear linearly in l (i.e., exactly one time);

• l is the elimination of some symbol declared in the same block, where eliminations include
application to a pattern, projection from a record type, and pattern-matching where the
return predicate and branches are also patterns;

• patterns can be pattern variables applied to locally bound variables, bound variables, or
λ-abstractions where the type and body are both patterns;

• r is unconstrained (except its free variables).

In order to preserve subject reduction, we also ask that there exists a type A such that ∆ ` l : A
and ∆ ` r : A. Rewrite rules are interpreted as follows (σ instantiates the pattern variables):

σ : Γ→ ∆

lσ −→ rσ

Modular Confluence for Rewrite Rules in MetaCoq Cockx, Tabareau, Winterhalter

The Tait–Martin-Löf criterion. This method to prove confluence [5] has been used in
MetaCoq to show the confluence of PCUIC [7]. Basically, it requires to introduce—beside the
standard reduction (−→)—a notion of parallel reduction (V) which may do one-step reduction
in all its subterms and such that:

−→ ⊆V ⊆ −→?

so that confluence of parallel reduction is sufficient to get confluence of reduction. In particular,
parallel reduction is reflexive.

Confluence of V relies on the existence of an auxiliary function ρ such that ρ(t) is the best
parallel reduct of t, i.e., whenever tV u we also have uV ρ(t). This means that tV ρ(t) holds
as well. The existence of such a function ρ is called the triangle property and allows us to derive
confluence by glueing two triangles as illustrated below:

t
p|

�
".u

 -
v

q~
ρ(t)

Modular confluence for rewrite rules. For a given set S of rewrite rules to be confluent
with the rest of the system, we ask that it satisfies the triangle property locally in the following
sense. Assuming that the set S of rewrite rules is ordered (for instance, by their order of
appearance), we define the function ρS by applying the first rule in S that matches and applying
ρS recursively on the pattern variables. For instance, for the rule x, y : A ` F (G x) y _ H x y,
the definition of ρS is ρS(F (G x) y) = H (ρS x) (ρS y). Then, the local triangle property for
S asks that ρS satisfies the triangle property for the rules in S.

Assuming this local triangle property for S and that the theory satisfies the triangle property
(with function ρ), we can show that the theory extended with the new set S of rewrite rules
still satisfies the triangle property, and thus is confluent. The new auxiliary function ρ is just
obtained merging ρS into ρ; replacing every recursive call to ρS by a recursive call to ρ.

One key ingredient in the proof is the fact that if a term matches one of the rules in S, it
still matches this rule after applying any of the ‘old’ rules to (subterms of) this term. This is
very important for the modular reasoning to go through, and it is not satisfied by non-linear
rewrite rules. Indeed, when a non-linear rule matches, this match is easily broken by rewriting
only one of the two occurrences of the non-linear pattern, whatever this reduction is. Thus, the
confluence of non-linear rewrite rules cannot be analyzed this way.

Coming back to the example of parallel plus, the local triangle property is satisfied after
adding the following (admissible) reduction rule, with high priority:

n,m : N ` pplus (S n) (S m)V S (S (pplus n m))

Extended this way, our criterion shows that adding pplus to the theory does not break confluence.
Compared to the literature on higher-order rewriting [4, 1, 8], our criterion may look very

restrictive. The reason is that we focus on modularity and formal provability, and we work with
PCUIC rather than a simpler Pure Type System as is usually the case in the literature.

Formalisation. The formalisation of this modular approach to confluence can be found
at https://github.com/TheoWinterhalter/template-coq/tree/rewrite-rules. It is a fork
of the MetaCoq repository where we add rewrite rules to the global environment. The confluence
proof is in the process of being updated accordingly although there are still remaining assumptions
at the time of submission.

2

Modular Confluence for Rewrite Rules in MetaCoq Cockx, Tabareau, Winterhalter

References
[1] Frédéric Blanqui, Claude Kirchner, and Colin Riba. On the confluence of lambda-calculus with

conditional rewriting. Theor. Comput. Sci., 411(37):3301–3327, 2010.
[2] Jesper Cockx and Andreas Abel. Sprinkles of extensionality for your vanilla type theory. In Types

for Proofs and Programs, TYPES, 2016.
[3] Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. How to tame your rewrite rules. In Types

for Proofs and Programs, TYPES, 2019.
[4] Richard Mayr and Tobias Nipkow. Higher-order rewrite systems and their confluence. Theoretical

computer science, 192(1):3–29, 1998.
[5] Gert Smolka. Confluence and normalization in reduction systems. Lecture Notes, 2015.
[6] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze,

Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The MetaCoq Project. To appear in
Journal of Automated Reasoning, 2020.

[7] Matthieu Sozeau, Simon Boulier, Yannick Forster, Nicolas Tabareau, and Théo Winterhalter. Coq
Coq correct! verification of type checking and erasure for Coq, in Coq. PACMPL, 4(POPL), 2020.

[8] Vincent van Oostrom. Confluence by decreasing diagrams. In Rewriting Techniques and Applications,
RTA 2008, volume 5117 of Lecture Notes in Computer Science, 2008.

3

8 Types and verification (WG4)

106

Program Analysis via Monadic Translations

Nils Köpp1, Thomas Powell2, and Chuangjie Xu1

1 Ludwig-Maximilians-Universität München, Munich, Germany
2 Technische Universität Darmstadt, Darmstadt, Germany

Abstract

We introduce a parametrized monadic translation of Gödel’s System T (and its exten-
sions), and prove a corresponding fundamental theorem of logical relation. By instantiating
the monad and the base case of the logical relation, we reveal various properties and struc-
tures of programs in T such as majorizability and (uniform) continuity.

Introduction Our goal is to reveal information that is implicit in the structure of functional
programs via syntactic translations. Inspired by [vdB19], we introduce a notion of nucleus to
parametrize the translation. A nucleus looks like a monad in the form of a Kleisli extension,
but it is not required to satisfy the monad laws. Our translated programs remain in the same
language instead of some monadic metalanguage as in [Uus02, Pow19], so that the targeting
information of a program, such as certain bounds or moduli, can be represented as a program
in the same language. Note that our translation structurally corresponds to Gentzen’s negative
translation [Ish00], whereas those in [Uus02, Pow19] correspond to Kolmogorov’s and Kuroda’s.
For simplicity, we firstly work with Gödel’s System T and then demonstrate how our method
is generalized to the extension T with (co)inductive types.

System T and J-translation Recall that the term language of System T can be given by

Type σ, τ ::= N | σ → τ

Term t, u ::= x | λx.t | tu | 0 | suc | rec

with the usual typing and reduction rules (specifically, we take rec : σ→(N→σ→σ)→N→σ).
A nucleus relative to T is a triple (JN, η, κ) where JN is a type and

η : N→ JN κ : (N→ JN)→ JN→ JN

are terms in T. We may write gκ instead of κ(g) for g : N→ JN. Given a nucleus (JN, η, κ), we
can translate T into itself as follows: For each type ρ of T, assign a type ρJ by

NJ := JN
(σ → τ)J := σJ → τ J.

Given a term t : ρ of T and a mapping of variables x : τ in its context to variables xJ : τ J,
assign a term tJ : ρJ by induction on t as follows

(x)J := xJ (λx.t)J := λxJ.tJ (tu)J := tJuJ

0J := η0 sucJ := κ(η ◦ suc) recJ := λaf.ke(rec(a, f ◦ η))

where keτ : (N→ τ J)→ JN→ τ J is the extension of κ to arbitrary type τ of T which is defined
inductively on τ . Our main result is the following variant of the fundamental theorem of logical
relation [Sta85]:

Program Analysis via Monadic Translations Köpp, Powell and Xu

Theorem 1. Let (JN, η, κ) be a nucleus. Given a binary relation RN ⊆ N × JN, we extend it
to Rρ ⊆ ρ× ρJ for arbitrary type ρ of T by defining

f Rσ→τ g := ∀xσ, aσJ

(x Rσ a→ fx Rτ ga) .

If RN satisfies
∀n (n RN ηn) and ∀i (fi RN gi)→ f RN→N g

κ (†)
then t Rρ t

J for any closed term t : ρ of T.

Instantiations Our first example is Howard’s majorizability relation [How73] which extends
the usual ordering ≤ on natural numbers to functionals of arbitrary finite type in the same way
as in the above theorem, i.e.

n /N m := n ≤ m
f /σ→τ g := ∀x, y (x /σ y → fx /τ gy) .

We say t is majorized by u if t / u, and call u a majorant of t. Majorizability plays an important
role in models of higher-order calculi and more recently in the proof mining program [Koh08].
Howard shows that each closed term of T is majorized by some closed term of T. This result
fits perfectly into our framework: Taking JN = N and defining η : N→ N and gκ : N→ N by

η(n) := n
gκ(0) := g(0)

gκ(n+ 1) := max(gκ(n), g(n+ 1))

for any g : N→ N, we can easily show that /N fulfills the conditions (†), and thus have t / tJ for
every closed term t of T by Theorem 1. In this instantiation, the translation is an algorithm to
construct majorants, and its correctness is given by the fundamental theorem of logical relation.
Working with other nuclei, we can e.g. compute moduli of (uniform) continuity [Xu19b] and
construct bar-recursion functionals [OS18] for T-definable functions via the translation. More
details and examples can be found in our preprint and Agda development [Xu19a].

Extensions Now consider the extension of T with products and sums. Products are trans-
lated component-wise. For sums, we generalize the notion of nucleus to an endo-map J on types
with terms η, κ of suitable types. Then the type translation is extended with

(σ × ρ)
J := σJ × ρJ (σ + ρ)

J := J
(
σJ + ρJ

)

corresponding to Gentzen’s negative translation of conjunction and disjunction. We can further
extend our framework to certain inductive and co-inductive types. As an example consider the
type S(τ) of infinite streams with constants

hd : S(τ)→ τ tl : S(τ)→ S(τ) coit : (σ → τ)→ (σ → σ)→ σ → S(τ).

To translate S(τ), we recursively translate its argument τ and then apply the map J, i.e.

(S(τ))J := J(S(τ J)).

The constants of S(τ) are translated as follows:

hdJ := ke (hd) : J(S(τ J))→ τ J tlJ := κ (η ◦ tl) : J(S(τ J))→ J(S(τ J))

coitJ := λh, t, x. η (coit(h, t, x)) : (σJ → τ J)→ (σJ → σJ)→ σJ → J(S(τ J)).

As an application consider the nucleus J(S(τ)) := (N → τ). This will translate programs with
streams as above into programs using function-representations of streams instead.

2

Program Analysis via Monadic Translations Köpp, Powell and Xu

References

[How73] William A. Howard. Hereditarily majorizable functionals of finite type. In Metamathemat-
ical investigation of intuitionistic Arithmetic and Analysis, volume 344 of Lecture Notes in
Mathematics, pages 454–461. Springer, Berlin, Heidelberg, 1973.

[Ish00] Hajime Ishihara. A note on the Gödel-Gentzen translation. Mathematical Logic Quarterly,
46(1):135–137, 2000.

[Koh08] Ulrich Kohlenbach. Applied Proof Theory: Proof Interpretations and their Use in Mathemat-
ics. Springer Monographs in Mathematics, 2008.

[OS18] Paulo Oliva and Silvia Steila. A direct proof of Schwichtenberg’s bar recursion closure theorem.
The Journal of Symbolic Logic, 83(1):70–83, 2018.

[Pow19] Thomas Powell. A unifying framework for continuity and complexity in higher types, 2019.
arXiv:1906.10719 [cs.LO].

[Sta85] Richard Statman. Logical relations and the typed lambda calculus. Information and Control,
65:85–97, 1985.

[Uus02] Tarmo Uustalu. Monad translating inductive and coinductive types. In H. Geuvers and
F. Wiedijk, editors, Types for Proofs and Programs (TYPES 2002). Lecture Notes in Computer
Science, vol 2646, pages 299–315. Springer, 2002.

[vdB19] Benno van den Berg. A Kuroda-style j-translation. Archive for Mathematical Logic, 58(5–
6):627–634, 2019.

[Xu19a] Chuangjie Xu. A Gentzen-style monadic translation of Gödel’s System T. arXiv:1908.05979
[cs.LO]. Agda development available at http://cj-xu.github.io/agda/ModTrans/index.

html, 2019.

[Xu19b] Chuangjie Xu. A syntactic approach to continuity of T-definable functionals, 2019. To appear
at Logical Methods in Computer Science. arXiv:1904.09794 [math.LO].

3

Contextual Modal Types for Algebraic Effects and Handlers
Nikita Zyuzin and Aleksandar Nanevski

IMDEA Software Institute

Algebraic effects and handlers [2, 9] provide a modular and compositional description for
computational effects. In this view, only a designated set of operations invokes side effects
during evaluation of a term. Moreover, the use of such operations can be eliminated by a
handler that provides definitions for these operations.

In this work, we propose that algebraic effects and handlers can be naturally typed using
a variation of Contextual Modal Type Theory [5]. CMTT distinguishes between contextual
modal variables u :: A[∆], and normal variables x : A, having two separate contexts Θ and Γ
for them respectively. The type [∆]A classifies terms that depend on normal variables in the
context ∆, but no other normal variables. The typing rules of CMTT are:

2I
Θ;∆ ⊢ s : A

Θ;Γ ⊢ box ∆. s : [A]∆
2E

Θ;Γ ⊢ s : [A]∆ Θ, u :: A[∆]; Γ ⊢ t : B

Θ;Γ ⊢ let box u = s in t : B

ctxhyp
(u :: A[∆]) ∈ Θ Θ;Γ ⊢ σ : ∆

Θ; Γ ⊢ handle u with σ : A
explsub

Θ;Γ ⊢ si : Ai i = 1, n

Θ;Γ ⊢ ⟨si/xi, . . . ⟩ : (xi : Ai, . . .)

The 2I rule introduces contextual modality; the term under the box constructor may only use
normal variables bound by the context ∆, but not by Γ. The rules 2E and ctxhyp allow to
use a boxed term, by binding it to a variable in the context (2E), and then using this variable
(ctxhyp). One can use contextual variables by applying an explicit substitution (explsub) that
replaces all box-bound variables with appropriate terms.

We propose to view the context ∆ as the algebraic theory of computations of type [∆]A.
Thus the calculus immediately provides a type-and-effect system. Consider the program P
that uses algebraic effects from theories St =̂ get : unit → nat, put : nat → unit of state and
Ex =̂ raise : unit → ⊥ of exceptions:

P =̂ box St, Ex. let x = get() in
if x = 42 then raise() else put(x + 1)

P has the type [St, Ex]unit, signifying that P can cause effects from St and Ex, but no others.
To run P , we must provide an explicit substitution σ that defines all the operations from St

and Ex, and then execute let box u = P in handle u with σ.
Explicit substitution is thus similar to handling of algebraic effects, which is why we write

handle to denote applying it. Unfortunately, the similarity is not strong enough, as in CMTT
we cannot define a handler neither for state nor for exceptions in this example. The problem
arises because we want to use the operations get, set and raise as generic effects[8] and pass
no continuation arguments that would allow state manipulation in substitution clauses.

In this paper we modify CMTT to adapt its notion of handling to programming with alge-
braic effects, preserving the type-and-effect discipline of contextual modal types. Specifically:
(1) We use contextual modal types to denote algebraic theories of effectful computations; (2)
We adopt the judgment for monadic computation e ÷ A from [6], whose terms make the se-
quencing of effects explicit. Only terms of this judgment can be boxed; (3) When used left of
⊢ to declare variables, we generalize the judgment to c÷ A ⇒ B. The generalized judgement

Contextual Modal Types for Algebraic Effects and Handlers Zyuzin and Nanevski

denotes computations hypothetical in A (thus, it classifies effectful functions), and gives us suit-
able typing for the effect operators; (4) We extend the notion of applying explicit substitution
in CMTT to handling of algebraic effects. Most important typing rules of our system are:

cnthyp
(k∼: A⊗B ⇝ C) ∈ Γ Θ;Γ ⊢ s : A Θ;Γ ⊢ t : B

Θ;Γ ⊢ throw k s t÷ C
ophyp

Θ;Γ, op÷A ⇒ B ⊢ s : A

Θ;Γ, op÷A ⇒ B ⊢ op s÷B

handler
Θ;Γ, z : D,x : Ai, k∼: Bi ⊗D ⇝ C ⊢ ei ÷ C i = 1, n

Θ;Γ ⊢ z : D.{opi(x, k) ⇒ ei, . . . } ÷D.[opi÷Ai ⇒ Bi, . . .] ▷ C

ctxhyp
(u :: A[∆]) ∈ Θ Θ;Γ ⊢ h÷B.[∆] ▷ C Θ;Γ ⊢ t : B Θ;Γ, x : A, z′ : B ⊢ e÷ C

Θ;Γ ⊢ handle u with h from t to x.z′.e÷ C

In more detail, in e÷A, e is an effectful computation that runs and produces a value of type A.
This judgement forces computations to be written as a sequence of let forms. The judgments
e÷A and c÷A ⇒ B are related by the effhyp rule. Rule conthyp provides use for continuation
variables also typed by a hypothetical judgement.

We use the rules 2I and 2E from CMTT, adapting them to the judgement for computations.
The handler rule specifies handling of each operation opi÷Ai ⇒ Bi, with corresponding terms
ei. We type check these terms in the extended context, where z : D is a handler-bound variable
shared by all operations, x is the operation’s opi parameter, and k ∼: Bi ⊗ D ⇝ C is the
continuation for opi. The continuation takes opi’s output and a new value for the shared
variable, returning a value of the return type of the handler.

Finally, the ctxhyp rule types handling of computations, and subsumes the old rule from
CMTT. Here, handler h serves as the explicit substitution: h substitutes all the free variables
from the algebra ∆. from t specifies initial value t for the handler-bound variable. to x.z′.e
binds the final value and shared variable after handling to respectively x and z′ in e.

With our new typing rules, we can handle the program P , now setting St =̂ get÷ unit ⇒
nat, put÷ nat ⇒ unit and Ex =̂ raise÷ unit ⇒ ⊥ :

let box u = P in handle u with
s: nat. { get(v, k) => throw k s s,

put(v, k) => throw k v (),
raise(v, k) => ret ((), s) }

from 0 to x. s'. ret (x, s')

This handler has the type nat.[get÷unit ⇒ nat, put÷nat ⇒ unit, raise÷unit ⇒ ⊥]▷unit×nat.
The handler-bound variable s preserves the state of the program between different invocations
of get and put: the body of an operation receives current state in the context and specifies
the resulting state when calling continuation. from 0 sets the initial state to 0 for the handled
computation. Finally, we return the resulting value and state as a pair.

We are currently working on proving type soundness of the proposed calculus. In future,
we plan to scale to dependent types, as context with dependent types will allow us to concisely
specify algebraic theories with equations between algebraic operations. As CMTT has already
been shown to support dependent types [5], we expect that our extension to algebraic effects
will support them as well. Dependent types will also facilitate verification of programs with
generic effects, and we plan to explore potential connections with separation logic. These will
provide a different verification perspective, compared to other systems with algebraic effects
and dependent types, e.g. [1]. We also plan to explore abstraction over handlers and contexts
in the contextual types [4], to obtain abstraction over algebraic theories as an alternative to
row polymorphism [3]. Additionally, our use of contextual types gives another perspective on
scoping for algebraic effects and handlers [7, 10].

2

Contextual Modal Types for Algebraic Effects and Handlers Zyuzin and Nanevski

References
[1] Danel Ahman. Handling fibred algebraic effects. Proc. ACM Program. Lang., 2(POPL), December

2017.
[2] Andrej Bauer. What is algebraic about algebraic effects and handlers? arXiv preprint

arXiv:1807.05923, 2018.
[3] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. Abstracting algebraic

effects. Proceedings of the ACM on Programming Languages, 3(POPL):6, 2019.
[4] Andrew Cave and Brigitte Pientka. First-class substitutions in contextual type theory. In Logical

Frameworks & Meta-languages: Theory & Practice (LFMTP), pages 15–24, 2013.
[5] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory. ACM

Transactions on Computational Logic (TOCL), 9(3):23, 2008.
[6] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical

structures in computer science, 11(4):511–540, 2001.
[7] Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. Syntax and semantics for op-

erations with scopes. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 809–818, 2018.

[8] Gordon Plotkin and John Power. Algebraic operations and generic effects. Applied categorical
structures, 11(1):69–94, 2003.

[9] Matija Pretnar and Gordon D Plotkin. Handling algebraic effects. Logical Methods in Computer
Science, 9, 2013.

[10] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect handlers in scope. In Proceedings of the 2014
ACM SIGPLAN Symposium on Haskell, pages 1–12, 2014.

3

Project Proposal: Relieving User Effort for the Auto Tactic

in Coq with Machine Learning
Lasse Blaauwbroek∗

Czech Institute for Informatics, Robotics and Cybernetics, Czech Republic
Radboud University Nijmegen, the Netherlands

lasse@blaauwbroek.eu

We propose to enhance the auto tactic in Coq with machine learning, aiming to reduce
the effort the user has to put in designing hint databases for auto. We seek ideas and
advice regarding the specific type of ML that would be appropriate in this context.

Proof Styles in Coq The Coq Proof Assistant supports many methods of proving a theorem.
One can either directly write proof terms, or choose one of the tactical languages like Ltac [2] or
Mtac [3]. Then there are custom sets of tactics for Ltac like SSReflect [5]. However, even within
one of these paradigms there are still different styles of proving available. Some people advocate
structured proofs using Coq’s built-in bullet points, writing every step of the proof explicitly
in hopes of increasing readability. Other people try to write very compact and tailored tactic
scripts that prove a lemma in one step. This usually results in shorter and easier to maintain
proofs, often at the cost of readability. All of these styles have their place, depending on the
mathematical domain one is trying to formalize.

In this proposal we will focus on one specific proving style described and popularized by
Adam Chlipala [1]. The concept is to provide as little proof information as possible within the
tactic script of a lemma. Usually this means that one critical step of the proof is explicitly
stated in the script, while the rest of the proof is pieced together by automation. For example,
the critical step can be to use induction on a specific variable of the lemma. The resulting cases
of the induction principle then have to be solved by the built-in auto tactic. This tactic is a
generic prover that uses hints previously provided by the user to guide proof search. These
hints usually consist of a recipe on how to use a previously declared sublemma of the proof.
However, it is also possible to teach the auto tactic how and when to use custom tactics and
complete decision procedures.

This approach has two main advantages. (1) It keeps the actual proof scripts short and
therefore maintainable. If something in the development changes it should be easy to go through
the development and fix the hints and proofs, if necessary at all. (2) By only using the auto

tactic the user is forced to tease out important information about the proof and refactor this into
a lemma, hint or tactical procedure. In this way, all the crucial steps will be explicitly declared
and can be easily understood by readers without bogging them down with the straightforward
details of the proof. The truth of a lemma would ideally be evident to a reader simply by
thinking about previously provided hints for a bit, just like it is to Coq.

The auto Tactic Fundamentally, the auto tactic is a simple search procedure. For a proof
state it can compile a list of possible actions to take, together with a priority for these actions.
The resulting search space is traversed in BFS or DFS fashion until either a full proof is found
or a limit is reached. The interesting part is that the list of possible actions is compiled from
so-called hint-databases. These databases are meant to contain usage information for lemmas
and tactics in the current development. Users can add and remove information from a database
on the fly by using variations of the Hint vernacular. We give some examples that add hints
to a database.
• Hint Resolve thmx will tell auto to try and unify the current goal with the conclusion of

theorem thmx. On success, auto will replace the current goal with the assumptions of thmx.

∗This work was supported by the European Regional Development Fund under the project AI&Reasoning
(reg. no. CZ.02.1.01/0.0/0.0/15 003/0000466)

Project Proposal: Relieving User Effort for the Auto Tactic in Coq with Machine Learning Blaauwbroek

• Let thmy be a theorem that has an equality as its conclusion. Hint Rewrite -> thmy will
tell auto to rewrite the goal using thmy if the goal unifies with the left-hand side of the
equality. Any possible assumptions of thmy are added to the proof state.

• Hint Extern tac can be used to register any tactic tac to be run by auto. This can be
useful for making auto do things like normalize terms or other simple steps that never go
wrong. Also, since this vernacular gives us access to the full power of the tactical language,
it allows us to encode much more complicated hints, as we will elaborate below.
Hint databases have to be designed with great care. Adding the wrong lemmas to a database

can lead to a very large search space and even infinite loops. The larger and more complicated
a development is, the more problematic this becomes. To reduce the branching factor in such
developments, a hint can have a gate specifying the conditions that need to be met before the
hint is used. In its simplest form, this can be a pattern that must be matched to the goal before
the hint applies. It is, however, possible to write arbitrarily complicated gates using Ltac as
a programming language. This way, the hint can be accepted or rejected based on the full
contents of the proof state. Philosophically speaking, the goal of writing a gate is to capture
the domain specific knowledge and intuition that the user has on how and when to use a lemma
or tactic. A simple example is a gate for the lemma a < b → b < c → a < c. We want to
apply this lemma to a goal x < z only if we can expect to find a suitable y. Therefore, the gate
will be a pattern on the proof state: ?x < ?y,...,?y < ?z ` ?x < ?z. Note that this gate is
very strict, and a much more complicated one might be required in practice.

Experience tells us that for a decently sized development, the branching factor of the search
performed by auto has to be kept well below 1.5 to keep the system usable.1 The gating
required to reach this can be quite laborious. Conversely, it tends to not be very difficult to
achieve a branching factor smaller than five. Our proposal is to bridge the gap between these
factors using machine learning, bringing together the best of human intuition and the computers
ability to do the grunt work.

Machine Learning for auto Our proposal to incorporate machine learning into auto consists
of gathering information on previous runs of the auto tactic. The idea is that at the beginning
of a development, hints and proofs are usually much simpler, allowing auto to find a proof
easily. We can then record which hints ended up being fruitful in the context of which proof
state. As the development progresses, the system can then start to leverage this information to
prioritize the list of available actions to auto in a proof state. Actions will be more important
if they have been used previously in similar states. The amount of actions the machine learning
has to choose from will be quite limited because the gating of the user has already weeded out
most inapplicable actions.

One fundamental challenge is that the system will not have a lot of data to learn from. This
is because within a development a hint associated with a lemma would normally be used tens
or at most hundreds of times. The system needs to learn quickly in terms of data. On the
other hand, because there will be very few choices to be made at each point, there will be quite
a lot of time to consider each choice. For these reasons, most traditional learning techniques,
like neural networks, will not be immediately applicable. The simplest approach is to extract
features from proof states, and perform a direct comparison with previous states. However,
more symbolic methods such as approximate substring matching between goal and lemma may
also be applicable [4]. During TYPES we would like to gather feedback about other techniques
that may suit this setting.

1This is partially due to the fact that Coq users generally do not, can not, and often do not want to replace
the auto tactic with the found solution like is common in Isabelle. Therefore, to get a good experience, the
search has to be completed within seconds.

2

Project Proposal: Relieving User Effort for the Auto Tactic in Coq with Machine Learning Blaauwbroek

References

[1] Adam Chlipala. Certified Programming with Dependent Types - A Pragmatic Introduction to the
Coq Proof Assistant. MIT Press, 2013.

[2] David Delahaye. A tactic language for the system coq. In Michel Parigot and Andrei Voronkov,
editors, Logic for Programming and Automated Reasoning, 7th International Conference, LPAR
2000, Reunion Island, France, November 11-12, 2000, Proceedings, volume 1955 of Lecture Notes
in Computer Science, pages 85–95. Springer, 2000.

[3] Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, and Derek Dreyer. Mtac2:
typed tactics for backward reasoning in coq. PACMPL, 2(ICFP):78:1–78:31, 2018.

[4] Jiaying Wang, Xiaochun Yang, Bin Wang, and Chengfei Liu. An adaptive approach of approximate
substring matching. In Database Systems for Advanced Applications - 21st International Conference,
DASFAA 2016, Dallas, TX, USA, April 16-19, 2016, Proceedings, Part I, pages 501–516, 2016.

[5] Iain Whiteside, David Aspinall, and Gudmund Grov. An essence of ssreflect. In Intelligent Com-
puter Mathematics - 11th International Conference, AISC 2012, 19th Symposium, Calculemus 2012,
5th International Workshop, DML 2012, 11th International Conference, MKM 2012, Systems and
Projects, Held as Part of CICM 2012, Bremen, Germany, July 8-13, 2012. Proceedings, pages
186–201, 2012.

3

Type-preserving compilation via dependently typed syntax

Andreas Abel∗

Department of Computer Science and Engineering, Gothenburg University

The CompCert project [Leroy, 2009] produced a verified compiler for a large fragment of
the C programming language. The CompCert compiler is implemented in the type-theoretic
proof assistant Coq [INRIA, 2019], and is fully verified: there is a proof that the semantics of
the source program matches the semantics of the target program. However, full verification
comes with a price: the majority of the formalization is concerned not with the runnable code
of the compiler, but with properties of its components and proofs of these properties. If we are
not willing to pay the price of full verification, can we nevertheless profit from the technology
of type-theoretic proof assistants to make our compilers safer and less likely to contain bugs?

In this talk, I am presenting a compiler for a small fragment of the C language using
dependently-typed syntax [Benton et al., 2012, Allais et al., 2018]. A typical compiler is proceed-
ing in phases: parsing, type checking, code generation, and finally, object/binary file creation.
Parsing and type checking make up the front end, which may report syntax and type errors to
the user; the other phases constitute the back end that should only fail in exceptional cases.
After type checking succeeded, we have to deal only with well-typed source programs, whose
abstract syntax trees can be captured with the indexed data types of dependently-typed proof
assistants and programming languages like Agda [Agda developers, 2019], Coq, Idris [Brady,
2013], Lean [de Moura et al., 2015] etc. More concisely, we shall by dependently-typed syntax
refer to the technique of capturing well-typedness invariants of syntax trees.

Representing also typed assembly language [Morrisett et al., 1999] via dependently-typed
syntax, we can write a type-preserving compiler whose type soundness is given by construction.
In the talk, the target of compilation is a fragment of the Java Virtual Machine (JVM) enriched
by some administrative instructions that declare the types of local variables. With JVM being
a stack machine, instructions are indexed not only by the types of the local variables, but also
by the types of the stack entries before and after the instruction. However for instructions that
change the control flow, such as unconditional and conditional jumps, we need an additional
structure to ensure type safety. Jumps are safe if the jump target has the same machine typing
than the jump source. By machine typing we mean the pair of the types of the local variables
and the types of the stack entries. Consequently, each label (i. e., jump target) needs to be
assigned a machine type and can only be targeted from a program point with the same machine
type. Technically, we represent labels as machine-typed de Bruijn indices, and control-flow
instructions are indexed by a context of label types. We then distinguish two types of labels:

1. Join points, e. g., labels of statements following an if-else statement. Join points can
be represented by a let binding in the abstract JVM syntax.

2. Looping points, e. g., labels at the beginning of a while statement that allow back jumps
to iterate the loop. Those are represented by fix (recursion).

Using dependently-typed machine syntax, we ensure that well-typed jumps do not miss. As
a result, we obtain a type-preserving compiler by construction, with a good chance of full
correctness, since many compiler faults already break typing invariants. Intrinsic well-typedness
also allows us to write the compiler as a total function from well-typed source to typed assembly,
and totality can be automatically verified by the Agda type and termination checker.

∗Supported by VR grants 621-2014-4864 and 2019-04216 and EU Cost Action CA15123.

Type-preserving compilation via dependently typed syntax A. Abel

References

Agda developers. Agda 2.6.0 documentation, 2019. http://agda.readthedocs.io/en/v2.6.0/.

G. Allais, R. Atkey, J. Chapman, C. McBride, and J. McKinna. A type and scope safe universe of
syntaxes with binding: their semantics and proofs. Proceedings of the ACM on Programming
Languages, 2(ICFP):90:1–90:30, 2018. https://doi.org/10.1145/3236785.

N. Benton, C.-K. Hur, A. Kennedy, and C. McBride. Strongly typed term representations
in Coq. Journal of Automated Reasoning, 49(2):141–159, 2012. https://doi.org/10.1007/
s10817-011-9219-0.

E. Brady. Idris, a general-purpose dependently typed programming language: Design and
implementation. Journal of Functional Programming, 23(5):552–593, 2013. http://dx.doi.
org/10.1017/S095679681300018X.

L. M. de Moura, S. Kong, J. Avigad, F. van Doorn, and J. von Raumer. The Lean theorem
prover (system description). In A. P. Felty and A. Middeldorp, editors, Automated Deduction
- CADE-25 - 25th International Conference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings, vol. 9195 of Lecture Notes in Computer Science, pages 378–
388. Springer, 2015. https://doi.org/10.1007/978-3-319-21401-6 26.

INRIA. The Coq Proof Assistant Reference Manual. INRIA, version 8.9 edition, 2019. http:
//coq.inria.fr/.

X. Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):
107–115, 2009. http://doi.acm.org/10.1145/1538788.1538814.

J. G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly language.
ACM Transactions on Programming Languages and Systems, 21(3):527–568, 1999. https:
//doi.org/10.1145/319301.319345.

2

9 Types and computation

118

Multi Types for Strong Call-by-Value

Beniamino Accattoli1, Andrea Condoluci2, Giulio Guerrieri3, Maico Leberle1,
and Claudio Sacerdoti Coen2

1 LIX, Inria, Palaiseau, France
beniamino.accattoli@inria.fr maico-carlos.leberle@inria.fr

2 Department of Computer Science, University of Bologna, Bologna, Italy
andreacondoluci@gmail.com sacerdot@cs.unibo.it

3 Department of Computer Science, Universtity of Bath, Bath, United Kingdom
g.guerrieri@bath.ac.uk

Plotkin’s call-by-value λ-calculus [31] is at the heart of programming languages such as
OCaml and proof assistants such as Coq. In the study of programming languages, call-by-
value (CbV) evaluation is usually weak (it does not reduce under abstractions) and terms are
assumed to be closed. These constraints give rise to an elegant framework, called Closed CbV
by Accattoli and Guerrieri [4].

It often happens, however, that one needs to go beyond the perfect setting of Closed CbV by
considering Strong CbV (reduction under abstractions is allowed and terms may be open), or
the intermediate setting of Open CbV (evaluation is weak but terms may be open). The need
arises, most notably, when describing the implementation model of Coq, as done by Grégoire
and Leroy [19], but also from other motivations, such as denotational semantics [30, 33, 6, 10],
monad and CPS translations [26, 34, 35, 16, 21], bisimulations [23], partial evaluation [22],
linear logic proof nets [1], cost models [7].

Näıve Extension of CbV. In call-by-name (CbN) turning to open terms or strong evaluation
is harmless because CbN does not impose any special form to the arguments of β-redexes. On
the contrary, turning to Open or Strong CbV is delicate. While some fundamental properties
such as confluence and standardization hold also in such cases, as showed by Plotkin’s himself,
others break as soon as one considers open terms. As pointed out by Paolini and Ronchi Della
Rocca [30, 28, 33], denotational semantics that are adequate1 for Closed CbV are no longer
adequate for the extended settings. Roughly, there are terms that are semantically divergent,
that is, with empty semantics, while they are normal forms with respect to Plotkin’s rules, and
should have non-empty semantics.

The discrepancy can be seen from a logical point of view. These terms diverge also if seen
as (recursively typed) linear logic proof nets, as pointed out by Accattoli [1], or as terms in the
computational interpretation of sequent calculus due to Curien and Herbelin [11]. One may
even trace the problems of Closed CbV to Plotkin’s seminal paper, where he points out an
asymmetry between CbN and CbV with respect to CPS translations. This fact led to a number
of studies [26, 34, 35, 24, 16, 21] that introduced many proposals of improved calculi for CbV.

A Survey of the Theory of Open CbV. Recently, Accattoli and Guerrieri provided an
in-depth study of Open CbV, providing operational [4] and semantic [5] analyses, connected at
the quantitative level.

1A model is adequate when the interpretation, or semantics, of a term is non-degenerated—typically non-
empty—iff the term normalizes. For a CbV model, adequacy is somewhat mandatory, because any model of
CbN provides a non-adequate model of CbV that does not model the CbV behavior.

Multi Types for Strong CbV Accattoli, Condoluci, Guerrieri, Leberle, Sacerdoti Coen

Operationally, they show that various proposed extensions of Closed CbV are termination
equivalent2 in the open setting, and evaluation in these calculi takes the same number of β-
steps. Namely, they relate Accattoli and Paolini’s value substitution calculus [6], which is a
term syntax for the proof-nets representation of λ-terms according to the CbV translation to
linear logic, Paolini and Della Rocca’s fireball calculus—used to design abstract machines by
Grégoire and Leroy [19] and Accattoli and Sacerdoti Coen [7]—and the value sequent calculus,
that is, the intuitionistic and CbV sub-calculus of Curien and Herbelin’s λµµ̃-calculus [11].

Semantically, they show that multi types (aka non-idempotent intersection types, aka rela-
tional semantics) in their CbV declination due to Ehrhard [17] characterize termination in the
previous calculi, and induce an adequate semantics, thus solving the inadequacy issue of the
näıve extension. In particular, such semantics is deeply related to linear logic, see for instance
[18, 8, 20, 13], and its CbN variant is the base of the main quantitative models of the λ-calculus,
see [32, 12, 14, 17, 9, 29, 27, 25, 3]. Accattoli and Guerrieri further use multi types derivations
to provide exact bounds to β-steps to normal form and for the size of normal forms, along the
lines of de Carvalho’s work for CbN multi types [12, 14].

Strong CbV. Here we extend the described theory of Open CbV to strong evaluation, at
the operational and semantic levels. We characterize termination in the value substitution
calculus, and use a new strong evaluation strategy with the diamond property. We also extract
the number of its steps and the size of the normal form from type derivations, in an exact way.
Multi types are also used for our main operational result, the normalization theorem for the
strategy, by exploiting an elegant approach used in de Carvalho et al. [15] and Mazza et al.
[25]. Our study preserves the deep connection with linear logic and its quantitative semantics,
and mimics the proof technique used by Accattoli, Graham-Lengrand, and Kesner [3].

Let us clarify a basic point. The strong setting is subtler, and extending the results from
Closed and Open CbV to Strong CbV is non-trivial. Closed CbV can be thought as a call-by-
normal-form calculus: β-redexes can be fired only when arguments are values (i.e. variables or
abstractions), and values are normal forms. A similar property can be recovered also in Open
CbV [4]. In Strong CbV such an essence is lost. To give an idea, if Ω denotes the usual diverging
term then in Strong CbV λx.Ω diverges (evaluation under abstraction) while (λy.z)(λx.Ω) may
both diverge and reduce to z—the argument needs not be fully normalized, but only reduced
to a (weak) value. This is mandatory, to be conservative over Closed and Open CbV.

As a consequence, even though we use Ehrhard’s multi types system for CbV [17] and Ac-
cattoli and Paolini’s value substitution calculus [6], we have to introduce some operational and
semantic refinements. Operationally, we define an evaluation strategy for the value substitution
calculus that we shall show to be normalizing. Its role is analogous to the leftmost-outermost
strategy of the λ-calculus. A notable difference, however, is that the strategy is itself non-
deterministic, but in a harmless way, as it is diamond.

Semantically, to characterize the set of normalizing terms via multi types, we need to con-
sider type derivations where occurrences of the empty multiset are restricted via a notion of
polarity. Only for these type derivations the size decreases after each step of the evaluation
strategy, allowing us to extract not only qualitative but also quantitative information.

This work is extracted from a more comprehensive paper [2] where we study Strong CbV
not only from an operational and semantic viewpoint, but also at the implementative level, via
an innovative study of abstract machines that do not break the fragile adequate relationship
with the semantics.

2Two calculi X and Y are termination equivalent if t terminates in X iff t terminates in Y.

2

Multi Types for Strong CbV Accattoli, Condoluci, Guerrieri, Leberle, Sacerdoti Coen

References

[1] Beniamino Accattoli. Proof nets and the call-by-value λ-calculus. Theor. Comput. Sci., 606:2–24,
2015.

[2] Beniamino Accattoli, Andrea Condoluci, Giulio Guerrieri, Maico Leberle, and Claudio Sacerdoti
Coen. Strong call-by-value. Submitted to LICS 2020.

[3] Beniamino Accattoli, Stéphane Graham-Lengrand, and Delia Kesner. Tight typings and split
bounds. PACMPL, 2(ICFP):94:1–94:30, 2018.

[4] Beniamino Accattoli and Giulio Guerrieri. Open Call-by-Value. In Programming Languages and
Systems - 14th Asian Symposium, APLAS 2016, volume 10017 of Lecture Notes in Computer
Science, pages 206–226. Springer, 2016.

[5] Beniamino Accattoli and Giulio Guerrieri. Types of fireballs. In Programming Languages and
Systems - 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018,
Proceedings, pages 45–66, 2018.

[6] Beniamino Accattoli and Luca Paolini. Call-by-Value Solvability, revisited. In FLOPS, pages 4–16,
2012.

[7] Beniamino Accattoli and Claudio Sacerdoti Coen. On the Relative Usefulness of Fireballs. In 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, pages 141–155. IEEE
Computer Society, 2015.

[8] Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics: the
exponentials. Ann. Pure Appl. Logic, 109(3):205–241, 2001.

[9] Antonio Bucciarelli, Thomas Ehrhard, and Giulio Manzonetto. A relational semantics for par-
allelism and non-determinism in a functional setting. Ann. Pure Appl. Logic, 163(7):918–934,
2012.

[10] Alberto Carraro and Giulio Guerrieri. A Semantical and Operational Account of Call-by-Value
Solvability. In FOSSACS 2014, pages 103–118, 2014.

[11] Pierre-Louis Curien and Hugo Herbelin. The duality of computation. In ICFP, pages 233–243,
2000.

[12] Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Thèse de doctorat,
Université Aix-Marseille II, 2007.

[13] Daniel de Carvalho. The relational model is injective for multiplicative exponential linear logic.
In CSL 2016, pages 41:1–41:19, 2016.

[14] Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection types.
Math. Str. in Comput. Sci., 28(7):1169–1203, 2018.

[15] Daniel de Carvalho, Michele Pagani, and Lorenzo Tortora de Falco. A semantic measure of the
execution time in linear logic. Theor. Comput. Sci., 412(20):1884–1902, 2011.

[16] Roy Dyckhoff and Stéphane Lengrand. Call-by-Value lambda-calculus and LJQ. J. Log. Comput.,
17(6):1109–1134, 2007.

[17] Thomas Ehrhard. Collapsing non-idempotent intersection types. In CSL, pages 259–273, 2012.

[18] Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.

[19] Benjamin Grégoire and Xavier Leroy. A compiled implementation of strong reduction. In Proceed-
ings of the Seventh ACM SIGPLAN International Conference on Functional Programming, ICFP
’02, pages 235–246. ACM, 2002.

[20] Giulio Guerrieri, Luc Pellissier, and Lorenzo Tortora de Falco. Computing Connected Proof(-
Structure)s from their Taylor Expansion. In FSCD 2016, pages 20:1–20:18, 2016.

[21] Hugo Herbelin and Stéphane Zimmermann. An operational account of Call-by-Value Minimal and
Classical λ-calculus in Natural Deduction form. In TLCA, pages 142–156, 2009.

[22] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

3

Multi Types for Strong CbV Accattoli, Condoluci, Guerrieri, Leberle, Sacerdoti Coen

[23] Søren B. Lassen. Eager Normal Form Bisimulation. In 20th IEEE Symposium on Logic in Computer
Scienc, LICS 2005, pages 345–354. IEEE Computer Society, 2005.

[24] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. Call-by-name, Call-by-value,
Call-by-need and the Linear λ-Calculus. TCS, 228(1-2):175–210, 1999.

[25] Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and intersec-
tion types. PACMPL, 2:6:1–6:28, 2018.

[26] Eugenio Moggi. Computational λ-Calculus and Monads. In LICS ’89, pages 14–23, 1989.

[27] C.-H. Luke Ong. Quantitative semantics of the lambda calculus: Some generalisations of the
relational model. In LICS 2017, pages 1–12, 2017.

[28] Luca Paolini. Call-by-Value Separability and Computability. In ICTCS, pages 74–89, 2002.

[29] Luca Paolini, Mauro Piccolo, and Simona Ronchi Della Rocca. Essential and relational models.
Mathematical Structures in Computer Science, 27(5):626–650, 2017.

[30] Luca Paolini and Simona Ronchi Della Rocca. Call-by-value Solvability. ITA, 33(6):507–534, 1999.

[31] Gordon D. Plotkin. Call-by-Name, Call-by-Value and the lambda-Calculus. Theoretical Computer
Science, 1(2):125–159, 1975.

[32] Alberto Pravato, Simona Ronchi Della Rocca, and Luca Roversi. The call-by-value λ-calculus: a
semantic investigation. Math. Str. in Comput. Sci., 9(5):617–650, 1999.

[33] Simona Ronchi Della Rocca and Luca Paolini. The Parametric λ-Calculus – A Metamodel for
Computation. Texts in Theoretical Computer Science. An EATCS Series. Springer, 2004.

[34] Amr Sabry and Matthias Felleisen. Reasoning about Programs in Continuation-Passing Style.
Lisp and Symbolic Computation, 6(3-4):289–360, 1993.

[35] Amr Sabry and Philip Wadler. A Reflection on Call-by-Value. ACM Trans. Program. Lang. Syst.,
19(6):916–941, 1997.

4

Calling paradigms and the box calculus

José Esṕırito Santo1, Lúıs Pinto1, and Tarmo Uustalu2

1 Centro de Matemática, Universidade do Minho, Portugal
2 Dept. of Computer Science, Reykjavik University, Iceland and Dept. of Software Science, Tallinn

University of Technology, Estonia

In our previous work [2], we studied the computational meaning of the traditional maps of
intuitionistic logic into S4 named after Girard and Gödel, respectively [6]. As source calculi we
took, respectively, the ordinary (call-by-name, cbn) λ-calculus [1] and Plotkin’s call-by-value
(cbv) λ-calculus [5]; as target calculus we took a very simple extension of the λ-calculus with
a S4 modality, where: the simplest solution to the problem of closure under substitution is
adopted; the normalization steps relative to the modality are regarded as administrative and
thus the syntax is organized so that such steps are integrated “on the fly” in the normalization
steps for implication. The resulting calculus is what we name here box calculus (λb in [2]), and
briefly recall now.

Terms of the box calculus are given by

M,N ::= ε(x) | λx.M |MN | box(N)

A term of the last form we call a box. The single reduction rule of the system is its β-rule:

(λx.M)box(N)→ [N/ε(x)]M (βb)

The connection with modal logic is best seen in the typed version of the calculus. Types
are given by

A ::= X | B ⊃ A | B B ::= 2A

(note the restriction of antecedents of implications to boxed types), typing judgments have the
form x1 : B1, ..., xn : Bn ` N : A, and typing rules include:

Γ, x : 2A ` ε(x) : A
Γ `M : A

Γ ` box(M) : 2A

A box is a term representing a proof ending with an inference introducing the box modality.
A box is also the mandatory form for an argument to be passed to a function in the β-rule of the
calculus. Finally, a box also marks a point where evaluation of proof terms seen as programs
does not enter. The evaluation relation is given by closure of the base βb-rule under applicative
contexts only: reduction can happen both in function and argument positions of applications,
but not under abstraction or inside a box – so evaluation is both weak and external. We say
the calculus obeys the call-by-box (cbb) paradigm, which we see as unifying cbn and cbv: as
shown in [2], the system enjoys a standardization theorem, from which we extract, via the
modal embeddings, the standardization theorems for the two source calculi mentioned above.

In this abstract we report on two developments about the box calculus. The first concerns
instantiations, an idea briefly introduced in [2]. These are translations of the box calculus
giving a concrete implementation for the box modality in terms of the interpreting calculus.
For instance, one can map the box calculus to the linear λ-calculus [4], implementing the box
modality as the bang modality. We worked out a new instantiation into call-by-push-value [3],
implementing the box modality as F ◦U , where F and U are the type operators of call-by-push-
value shifting between computation and value types. This instantiation allows us to see in what

Calling paradigms and the box calculus

measure the subsumption of cbn and cbv offered by call-by-push-value is already contained in
the unification offered by call-by-box.

As the second development reported in this abstract, we dig deeper in the unification offered
by cbb. The treatment of cbn in [2] is so neat that we may say Girard’s embedding just points
out an isomorphic copy of the cbn λ-calculus as a fragment of the box calculus. We can now
report an equally neat treatment for Plotkin’s cbv λ-calculus. This requires refining slightly
the box calculus, building in the untyped syntax a minimum of typing information—namely
distinguishing between terms that can and cannot have a modal type. This creates in the box
calculus two co-existing modes, the “left-first” and the “right-first”, with which we can qualify
the application constructor and reduction. The distinction between modes turns out to be
connected to the distinction between calling paradigms. We verify that Girard’s (resp. Gödel’s)
embedding can be recast as a map based on the idea of choosing the appropriate mode, trans-
lating application and reduction to left-first (resp. right-first) application and reduction. When
thus recast, the modal embeddings deliver isomorphisms between the cbn (resp. Plotkin’s cbv)
λ-calculus and some neat fragment of the refined box calculus. In this sense, ordinary and
Plotkin’s λ-calculi truly co-exist inside a simple modal calculus.

Acknowledgments: J.E.S. and L.P. were partially financed by Portuguese Funds through
FCT (Fundação para a Ciência e a Tecnologia) within the Projects UIDB/00013/2020 and
UIDP/00013/2020 T.U. was supported by the Estonian Ministry of Education and Research
institutional research grant IUT33-13. All three authors also benefited from the EU COST
action CA15123 EUTYPES.

References

[1] H.P. Barendregt. The Lambda Calculus. North-Holland, 1984.

[2] J. Esṕırito Santo, L. Pinto, and T. Uustalu. Modal embeddings and calling paradigms. In H. Geu-
vers, editor, 4th Int. Conf. on Formal Structures for Computation and Deduction, FSCD 2019,
volume 131 of Leibniz Int. Proc. in Informatics, pages 18:1–18:20. Dagstuhl Publishing, 2019.

[3] Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-Order
and Symbolic Computation, 19(4):377–414, 2006.

[4] J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name, call-by-value, call-by-need
and the linear lambda calculus. Theor. Comput. Sci., 228(1-2):175–210, 1999.

[5] G. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theor. Comput. Sci., 1:125–159, 1975.

[6] A. Troelstra and H. Schwitchtenberg. Basic Proof Theory. Cambridge Univ. Press, 2000.

2

Finitary general type theories in computational form∗

Andrej Bauer and Philipp G. Haselwarter

University of Ljubljana, Slovenia

A type theory can be presented in declarative or algorithmic style. The former specifies
derivability of judgements by listing the inference rules, while the latter imbues the theory with a
procedure for computing the derivable judgements. We present a computational calculus which,
given a type theory in declarative style, computes the derivable judgements of that theory. The
operational semantics of the calculus is inspired by bi-directional checking procedures which
operate in two modes, one for synthesizing judgements and another for checking terms against
types. The calculus is sound and complete for a class of type theories which we call the finitary
general type theories, which are a special case of general type theories [2]. We have implemented
an extended version of the calculus in the Andromeda 2 prover [1, 3].

Finitary general type theories The formalism of finitary general type theories encompasses
a class of type theories in the style of Martin-Löf. They have judgement forms for asserting
well-formedness of types and terms, and for equalities of types and terms, all hypothetical with
respect to an intuitionistic typing context. Further conditions are imposed on the inference rules
to guarantee reasonable meta-theoretic properties, such as uniqueness of typing, admissibility
of substitution and derivability of presuppositions.

The derivation calculus presented below computes with judgements and boundaries, a notion
which we explain briefly by example. Consider the usual formation rule for products, where we
write {x}B(x) to indicate that x is bound in B(x):

` A type x:A ` B(x) type

` Π(A, {x}B(x)) type
(1)

The object premises may be understood as providing “typing information” for the meta-variables,
i.e., the first premise tells us that A is a type meta-variable, and the second that B is a type
meta-variable depending on an argument of type A. We can display such typing information
explicitly as follows:

Π :
A : 2 type B : {x:A} 2 type

2 type
(2)

The expressions “2 type” and “{x:A} 2 type” are boundaries, that is to say, judgements with a
hole 2, possibly appearing under a binder, as in the case of B above. In general, the hole 2 of a
boundary B may be filled with an expression e, called the head, to give a judgement B[e]. Also
note that it is sufficient to specify only the boundary of the conclusion in (2), as the missing head
can be reconstructed as the symbol Π applied to the heads of the premises, suitably abstracted.

Each rule specifies a family of closure rules, which are obtained by instantiation of the meta-
variables appearing in the rule with term and type expressions in context Γ. For example, by
replacing A and B with type expressions Γ ` A and Γ, x:A ` B (note the change of font!) we
obtain a closure rule

Γ ` A type Γ, x:A ` B type

Γ ` Π(A, {x}B) type
(3)

∗This material is based upon work supported by the Air Force Office of Scientific Research under award
number FA9550-17-1-0326.

Finitary general type theories in computational form Bauer, Haselwarter

Derivation D ::= x variable∣∣ RD1 . . .Dn application of rule R∣∣ {x:D1} D2 typed abstraction∣∣ {x}D untyped abstraction∣∣ D1{D2} substitution∣∣ D1{D2}≡ equality substitution

Figure 1: The core derivation calculus

One specifies a type theory by writing down declarative inference rules in the style of (1), while
derivations are built inductively using closure rules in the style of (3).

This formalism encompasses many well-known type theories such as Martin-Löf type theory
with products, sums, identity types, natural numbers, and a universe. One may add to that
propositional truncation and univalence, or go in the other direction by postulating equality
reflection. Type theories with non-standard judgement forms or special treatment of contexts,
such as modal and cubical type theories, are not immediately expressible in our formalism,
although one can often represent them faithfully by using universes.

The rules of a general type theory are declarative. They constitute a set of closure rules that
specifies derivability of judgements, without suggesting any strategy for finding derivations. If
we want to put the rules of a theory to work, for instance in a proof assistant, we need to
formulate a corresponding computational version of the theory.

The derivation calculus We presume given a finitary general type theory T . We present a
derivation calculus whose operational semantics has two relations (whose rules are not shown
in this abstract), similar to the synthesis and checking modes of bi-directional type checking:

D VΓ J D synthesizes Γ ` J

D @ B VΓ e D checks B to derive Γ ` B[e]

In the first case, an expression of the core derivation calculus D synthesizes a judgement Γ ` J.
In the second case D checks against a boundary B to produce a head e yielding a judgement
Γ ` B[e]. Thus D, Γ and B are inputs, whereas J and e are outputs.

The syntax of the core calculus is shown in Figure 1. A derivation D may be a variable x
from the given context Γ, an application of a rule R of the theory T to premises computed by the
sub-derivations D1, . . . ,Dn, a typed or untyped abstraction, or a substitution. The substitution
expressions correspond to the two kinds of substitution rules in general type theories.

The operational semantics of derivations is well-behaved in the following sense:

Theorem. The derivation calculus is sound and complete for any finitary general type theory T :
a judgement Γ ` J is derivable in T if, and only if, there is D such that D VΓ J.

The core derivation calculus is amenable to extensions and adaptations that make it more
practically useful. For example, when the type theory T has decidable equality checking we
may elide derivations that check judgmental equalities, as these can be replaced by calls to
an equality-checking algorithm. In Andromeda 2 the derivation calculus is embedded in a
more elaborate meta-level programming language with computational effects that supports
user-defined techniques of proof development.

2

Finitary general type theories in computational form Bauer, Haselwarter

References
[1] The Andromeda proof assistant. http://www.andromeda-prover.org.
[2] Andrej Bauer, Philipp G. Haselwarter, and Peter LeFanu Lumsdaine. Toward an initiality theo-

rem for general type theories. In Workshop on Types, Homotopy Type Theory, and Verification.
Hausdorff Institute of Mathematics – Bonn (Germany), June 2018.

[3] Andrej Bauer, Philipp G. Haselwarter, and Anja Petković. A generic proof assistant. In Foundations
and Applications of Univalent Mathematics – Herrsching (Germany), December 2019.

3

10 Types, logic and lambda calculi

128

Comparing Session Type Interpretations of Linear Logic∗

Bas van den Heuvel and Jorge A. Pérez

University of Groningen, Groningen, The Netherlands
{b.van.den.heuvel,j.a.perez}@rug.nl

Context Session types are a popular approach to typed message-passing concurrency [14,
15, 20]. A session type describes the types and order of messages exchanged along a channel.
For example, the session type !int.?bool.end types a channel meant to perform the following
sequence: send an integer, receive a boolean, and close the channel. Session types have been
widely studied for the π-calculus [18,19], the paradigmatic model of concurrency and interaction.

Girard developed linear logic as the next logical step for reasoning about computation [11].
At an early stage of its development, he noted that linear logic would be a good candidate
for a Curry-Howard correspondence for concurrency [13]. Following attempts by Abramsky [1]
and others, Caires and Pfenning found a correspondence between a session-typed π-calculus
and intuitionistic linear logic [7]. Our example session type !int.?bool.end can be written as the
proposition int⊗ (bool(1), where ⊗ is sending,(is reception, and 1 is closing. Shortly after,
Wadler found a correspondence using classical linear logic [22], in which our example can be
written similarly to the intuitionistic proposition, but with

&

as reception: int⊗ (bool

&

1).
The logical interpretations of session types discovered in [7] and [22] have been extended to

provide justifications for notions such as behavioural polymorphism [5], (co)recursion [16, 21],
cyclic connections [10], non-determinism [4], domain-awareness [6], conflation of types [3], and
more. These extensions actually form a family of logical interpretations of session types, each
based on either intuitionistic or classical linear logic. Based on these developments, Atkey [2]
observed: “[j]ust as the Iron Curtain [. . .] lead to the same work being done twice, once in
the East and once in the West, the existence of two logically-based session-typed concurrency
formalisms [. . .] means that analogous work is performed on both sides.”

This Work In ongoing work, we aim at formally comparing the session type systems de-
rived from Curry-Howard interpretations of classical linear logic [9,22] and intuitionistic linear
logic [8], respectively referred to as CLL and ILL. To this end, we have developed United Linear
Logic (ULL), a logic based on the linear fragment of the Logic of Unity (LU) [12], developed
by Girard to study classical, intuitionistic, and linear logic together in one system. Following a
similar spirit, we have designed ULL to subsume both CLL and ILL. Indeed, ULL defines a basic
framework of reference in which both type systems can be objectively compared.

We briefly discuss differences between LU and ULL. LU uses polarities in propositions to
distinguish between classical and intuitionistic fragments. Since polarities are not relevant for
the linear part of LU, they are not included in ULL. Also, in ULL we do not include rules in LU
that allow linear propositions to freely switch sides in sequents. Moreover, UL does not fully
support propositions ⊥ and 1, which are required to interpret the terminated session type end.
For this reason, ULL includes complementary rules for these propositions. Finally, ULL includes
an additional cut rule and identity axiom, which are necessary to fully subsume CLL.

ULL consists of two-sided sequents Γ; ∆ ` Λ, where ∆ and Λ are linear contexts (propositions
that must be used exactly once) and Γ is the unrestricted context. The key insight of the Curry-
Howard correspondences in [7, 22] is that these sequents can be annotated with π-calculus

∗Work partially supported by the Netherlands Organization for Scientific Research (NWO) under the VIDI
Project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).

Comparing Session Type Interpretations of Linear Logic Van den Heuvel and Pérez

process terms and channel names (the free names of the process term). In ULL, the cut rule
then looks as follows:

Γ; ∆ ` P :: Λ, x : A Γ; ∆′, x : A ` Q :: Λ′
(CutR)

Γ; ∆,∆′ ` (νx)(P |Q) :: Λ,Λ′

Here, P and Q both have a free channel x. In both sequents, x has type A. However, it appears
on opposite sides of the turnstile, so P and Q implement complementary behaviors on x.
Therefore, we can place them in parallel (P |Q) and bind their common channel ((νx)(. . .)).

Our design for ULL is symmetrical, in the sense that everything that can be done on one
side of the turnstile can be done on the other. As a result, in ULL there are two cut rules and
two identity axioms. For example, the above cut rule works on the right of the turnstile and
is standard in intuitionistic linear logic, whereas the following (symmetrical) rule works on the
left, using duality (the notion that behaviour on opposite ends of a channel should be opposite)
indicated by (·)⊥, as is standard in classical linear logic:

Γ; ∆, x : A ` P :: Λ Γ; ∆′, x : A⊥ ` Q :: Λ′
(CutL)

Γ; ∆,∆′ ` (νx)(P |Q) :: Λ,Λ′

ULL can type all processes typable in CLL and CLL can type all processes typable in ULL. This
means that, in essence, ULL is a two-sided presentation of CLL.

The two-sidedness of ULL is very convenient for a formal comparison with ILL. Sequents in
ILL are very similar to those of ULL, but they require the linear context on the right to consist
of exactly one proposition: Γ; ∆ ` A. If we place the same restriction on typing derivations
in ULL, certain rules become impossible to use. Consider, for example, above CutL rule. If
both assumptions have one channel-type pair on the right (|Λ| = |Λ′| = 1), then the consequent
would have two channel-type pairs on the right (|Λ,Λ′| = |Λ|+ |Λ′| = 2), which clearly violates
our restriction. It turns out that the rules that remain usable coincide exactly with the rules
of ILL, showing that all ILL-typable processes are typable in ULL (and thus in CLL).

The fact that ULL has more inference rules than ILL is evidence that not all ULL-typable
processes are typable in ILL. Consider the following process:

P = x(y).!y(z).P ′,

where x(y) is an input and !y(z) is a replicated input. P can be typed in ULL in several ways,
but all of them use rules that violate the restriction of having exactly one channel-type pair on
the right. Hence, P is not typable in ILL, and so CLL is (slightly) more expressive than ILL.

Locality Caires, Pfenning, and Toninho were the first to observe a difference in expressivity
between CLL and ILL [9]. As they explain, ILL enforces locality, a principle well-known in the
process calculi literature. As defined by Merro [17], “[t]he locality property [. . .] is achieved by
imposing that only the output capability of [channels] may be transmitted, i.e., the recipient
of a [channel] may only use it in output actions.” As illustration, consider again process P
above: it receives a channel y which is then used to deploy a replicated server. Clients connect
to such a server by sending a channel to it, so the received service y has to receive a channel,
thus violating the locality principle. Caires, Pfenning, and Toninho use P as a specific example
to explain that ILL enforces the locality principle for shared names, while CLL does not. Using
ULL as reference framework, we can now use P as a counter-example to prove the difference in
expressivity between CLL and ILL, thus formalizing the observation by Caires, Pfenning, and
Toninho [9].

2

Comparing Session Type Interpretations of Linear Logic Van den Heuvel and Pérez

References

[1] Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer Science,
111(1):3–57, April 1993.

[2] Robert Atkey. Observed Communication Semantics for Classical Processes. In Hongseok Yang,
editor, Programming Languages and Systems, Lecture Notes in Computer Science, pages 56–82,
Berlin, Heidelberg, 2017. Springer.

[3] Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation Confers Concurrency. In Sam
Lindley, Conor McBride, Phil Trinder, and Don Sannella, editors, A List of Successes That Can
Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday,
Lecture Notes in Computer Science, pages 32–55. Springer International Publishing, Cham, 2016.

[4] Luis Caires and Jorge A. Pérez. Linearity, Control Effects, and Behavioral Types. In Programming
Languages and Systems, pages 229–259. Springer, 2017.

[5] Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral polymorphism
and parametricity in session-based communication. In Matthias Felleisen and Philippa Gardner,
editors, Programming Languages and Systems, pages 330–349, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

[6] Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Domain-Aware Session Types.
In Wan Fokkink and Rob van Glabbeek, editors, 30th International Conference on Concurrency
Theory (CONCUR 2019), volume 140 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 39:1–39:17, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[7] Luís Caires and Frank Pfenning. Session Types as Intuitionistic Linear Propositions. In Paul
Gastin and François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, Lecture Notes in
Computer Science, pages 222–236. Springer Berlin Heidelberg, 2010.

[8] Luís Caires, Frank Pfenning, and Bernardo Toninho. Towards concurrent type theory. In Pro-
ceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and Implementation,
pages 1–12. ACM, January 2012.

[9] Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Mathematical Structures in Computer Science, 26(3):367–423, March 2016.

[10] Ornela Dardha and Simon J. Gay. A New Linear Logic for Deadlock-Free Session-Typed Processes.
In Christel Baier and Ugo Dal Lago, editors, Foundations of Software Science and Computation
Structures, Lecture Notes in Computer Science, pages 91–109. Springer International Publishing,
2018.

[11] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, January 1987.
[12] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59(3):201–217,

February 1993.
[13] Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In Hartmut Ehrig, Robert

Kowalski, Giorgio Levi, and Ugo Montanari, editors, TAPSOFT ’87, Lecture Notes in Computer
Science, pages 52–66, Berlin, Heidelberg, 1987. Springer.

[14] Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR’93, pages 509–523,
Berlin, Heidelberg, 1993. Springer Berlin Heidelberg.

[15] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline for
structured communication-based programming. In Chris Hankin, editor, Programming Languages
and Systems, pages 122–138, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[16] Sam Lindley and J. Garrett Morris. Talking Bananas: Structural Recursion for Session Types.
In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, pages 434–447, Nara, Japan, 2016. ACM.

[17] Massimo Merro. Locality and Polyadicity in Asynchronous Name-Passing Calculi. In Jerzy Tiuryn,
editor, Foundations of Software Science and Computation Structures, Lecture Notes in Computer
Science, pages 238–251, Berlin, Heidelberg, 2000. Springer.

3

Comparing Session Type Interpretations of Linear Logic Van den Heuvel and Pérez

[18] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I. Information
and Computation, 100(1):1–40, September 1992.

[19] Davide Sangiorgi and David Walker. The Pi-Calculus: A Theory of Mobile Processes. Cambridge
University Press, October 2003.

[20] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language and its typing
system. In Costas Halatsis, Dimitrios Maritsas, George Philokyprou, and Sergios Theodoridis, ed-
itors, PARLE’94 Parallel Architectures and Languages Europe, pages 398–413, Berlin, Heidelberg,
1994. Springer Berlin Heidelberg.

[21] Bernardo Toninho, Luis Caires, and Frank Pfenning. Corecursion and Non-divergence in Session-
Typed Processes. In Matteo Maffei and Emilio Tuosto, editors, Trustworthy Global Computing,
Lecture Notes in Computer Science, pages 159–175, Berlin, Heidelberg, 2014. Springer.

[22] Philip Wadler. Propositions As Sessions. In Proceedings of the 17th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’12, pages 273–286, Copenhagen, Denmark, 2012.
ACM.

4

On self-interpreters for the λ�-calculus
and other modal λ-calculi

Miëtek Bak

IMDEA Software Institute
mietek.bak@imdea.org

It is commonly believed that a total programming language cannot have a self-interpreter.
Following Brown and Palsberg’s [5] discovery of a self-interpreter for System Fω, Bauer [3]
explains that whether such a language can or cannot have a self-interpreter depends on the
notion of self-interpreter. I refine the notions supplied by Bauer and reveal that the strongly
normalizing λ�-calculus of Davies and Pfenning [6] and other modal λ-calculi already have a
self-interpreter. The result sheds new light on an old problem in meta-programming.

Definition 1. An impredicative self-interpreter is given by a type � of source code of programs
of arbitrary type, and for all types τ , a meta-level quoting function p-qτ from programs of type
τ to programs of type �, and a universal program uτ : � ⊃ τ such that uτpeq ≡β e for all
programs e : τ .

Read program as a closed expression of a λ-calculus. Bauer’s “typed self-interpreter” is equivalent
to the definition of an impredicative self-interpreter.

Theorem 2. If a λ-calculus has an impredicative self-interpreter, then it has fixed-point opera-
tors at all types.

The above theorem justifies the belief that a total programming language cannot have a self-
interpreter. Bauer [4] supplies a constructive proof. Similar results are shown by Brown and
Palsberg, Harper [7], Hoare and Allison [8], and McBride [9].

Normal modal logics include the necessity connective �, the necessitation rule `τ
`�τ , and the

distribution axiom �(σ ⊃ τ) ⊃ �σ ⊃ �τ . Modal logics such as T, B, S4, and S5 are normal,
and include the reflexivity axiom �τ ⊃ τ . The λ�-calculus corresponds to intuitionistic S4,
and extends the simply typed λ-calculus with the terms box e and let box v = e1 in e2, and the
following typing and computation rules:

v : τ ∈ ∆
mvar

∆; Γ ` v : τ

∆; · ` e : τ
�I

∆; Γ ` box e : �τ
∆; Γ ` e1 : �τ ∆, v : τ ; Γ ` e2 : σ

�E
∆; Γ ` let box v = e1 in e2 : σ

�β
let box v = box e1 in e2 7→ e2[v/e1]

e1 7→ e′1
letbox1

let box v = e1 in e2 7→ let box v = e′1 in e2

e2 7→ e′2
letbox2

let box v = e1 in e2 7→ let box v = e1 in e
′
2

The program box e : �τ is β-normal for all programs e : τ , as no congruence rule applies.

Definition 3. A predicative self-interpreter is given by, for all types τ , a type �τ of source
code of programs of type τ such that �τ 6= τ , a meta-level quoting function p-qτ from programs
of type τ to programs of type �τ , and a universal program uτ : �τ ⊃ τ such that uτpeqτ ≡β e
for all programs e : τ .

In an impredicative self-interpreter, there is a single source code type, but in a predicative
self-interpreter, there is a ramified hierarchy of source code types. Therefore, unlike Bauer’s
“weak (Brown-Palsberg) self-interpreter”, the definition of a predicative self-interpreter already
rejects the trivial quoting function peqτ = e without additional constraints.

On self-interpreters for the λ�-calculus and other modal typed λ-calculi Miëtek Bak

Definition 4. The quoting function in a predicative self-interpreter is
1. normal : when, for all types τ , the program peqτ : �τ is β-normal for all programs e : τ ;
2. distributive: when, for all types σ and τ , there is a program dσ,τ : �(σ ⊃ τ) ⊃ �σ ⊃ �τ

such that dσ,τ pe1qσ,τ pe2qσ ≡β pe1 e2qτ for all programs e1 : σ ⊃ τ and e2 : σ;
3. weakly acceptable: when, for all types τ , there is a meta-level Gödel-encoding function

#τ from programs of type �τ to programs of type Nat such that #τpeqτ ≡β g(e) for all
programs e : τ ;

4. strongly acceptable: when, for all types τ , there is a Gödel-encoding program gτ : �τ ⊃ Nat

such that gτpeqτ ≡β g(e) for all programs e : τ .

Read g(e) as a Gödel encoding of the program e by a natural, and n as a program of type
Nat that represents the natural n. Weak and strong acceptability are two possible readings of
Bauer’s “acceptability”. Bauer does not discuss weak acceptability. Bauer’s “strong (Brown-
Palsberg) self-interpreter” is equivalent to a predicative self-interpreter with a normal and
strongly acceptable quoting function.

Normality requires the quoting function to produce values. Both weak and strong accept-
ability require the quoting function to preserve the unevaluated source code of the quoted
program for analysis. Weak acceptability only requires allowing analysis by means external to
the language, but strong acceptability also requires allowing analysis by internal means.

Theorem 5. The λ�-calculus has a predicative self-interpreter with a normal and distributive
quoting function.

Proof. Define peqτ = box e, uτ = λx : �τ. let box v = x in v, and dσ,τ = λx : �(σ ⊃ τ). λy :
�σ. let box v = x in let boxw = y in box (v w). Normality and distributivity follow from the
definition of computation rules.

A similar proof applies to any box calculus : a λ-calculus corresponding to a normal modal logic
with reflexivity, such as the simply typed fragment of contextual modal type theory given by
Nanevski, Pfenning, and Pientka [10], and the intensional λ-calculus of Artemov and Bonelli [1].

Theorem 6. The λ�-calculus, extended with naturals, has a predicative self-interpreter with a
normal, distributive, and weakly acceptable quoting function.

Proof. Proceed as above. Weak acceptability is shown by induction on typing derivations.

A similar proof applies to any intensional box calculus: a box calculus, extended with naturals,
in which computation does not proceed under box.

Any remaining controversy about the question whether a total programming language can
or cannot have a self-interpreter will amount to disagreement about the “correct” meaning
of the unqualified phrase “self-interpreter”. Instead, observe that by refining the notion of
self-interpreter, we recover a specification of one of Sheard’s [11] research challenges in meta-
programming. A language that has a predicative self-interpreter with a strongly acceptable
quoting function is also a language that supports intensional analysis of code. Bauer shows that
System T is such a language.

Whether System T is a practical meta-programming language is immaterial. Knowing
intensional analysis of code can be supported in a total programming language, we can now
search for such a language that will also be practical for the purposes of meta-programming.
The family of intensional box calculi is a promising place to start.

I conjecture there is a strongly normalizing intensional box calculus that supports intensional
analysis of code, and is sound and complete with respect to a Kripke semantics similar to the
one given for the λ�-calculus in my previous work [2].

2

On self-interpreters for the λ�-calculus and other modal typed λ-calculi Miëtek Bak

Acknowledgments I am grateful to Guillaume Allais, Ahmad Salim Al-Sibahi, Andrej Bauer,
Jacques Carette, Dan Doel, Paolo G. Giarrusso, Tom Jack, Conor McBride, and Aleksandar
Nanevski, for helpful comments and discussion.

References

[1] Sergei N. Artemov and Eduardo Bonelli. The intensional lambda calculus. In Sergei N. Artemov
and Anil Nerode, editors, International Symposium on Logical Foundations of Computer Science
(LFCS 2007), Proceedings, volume 4514 of Lecture Notes in Computer Science, pages 12–25.
Springer, 2007.

[2] Miëtek Bak. Introspective Kripke models and normalisation by evaluation for the λ�-calculus,
2017. 7th Workshop on Intuitionistic Modal Logic and Applications (IMLA 2017). Available at
http://github.com/mietek/imla2017.

[3] Andrej Bauer. On self-interpreters for Gödel’s System T. In Silvia Ghelizan and Jelena Ivetić,
editors, 22nd International Conference on Types for Proofs and Programs (TYPES 2016), Book
of Abstracts, pages 23–24, 2016.

[4] Andrej Bauer. On self-interpreters for System T and other typed λ-calculi, 2016. Available at
http://math.andrej.com/wp-content/uploads/2016/01/self-interpreter-for-T.pdf.

[5] Matt Brown and Jens Palsberg. Breaking through the normalization barrier: A self-interpreter
for Fω. In Rastislav Bod́ık and Rupak Majumdar, editors, 43rd Symposium on Principles of
Programming Languages (POPL 2016), Proceedings, pages 5–17. ACM, 2016.

[6] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In Hans-Juergen
Boehm and Guy L. Steele Jr., editors, 23rd Symposium on Principles of Programming Languages
(POPL 1996), Conference Record, pages 258–270. ACM, 1996.

[7] Robert Harper. Practical Foundations for Programming Languages. CUP, 2016.

[8] C. A. R. Hoare and Donald C. S. Allison. Incomputability. ACM Computing Surveys,
4(3):169–178, 1972.

[9] Conor McBride. On termination, 2003. Available at
http://mail.haskell.org/pipermail/haskell-cafe/2003-May/004343.html.

[10] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal type theory.
ACM Transactions on Computational Logic, 9(3):1–49, 2008.

[11] Tim Sheard. Accomplishments and research challenges in meta-programming. In 2nd
International Workshop on Semantics, Applications, and Implementation of Program Generation
(SAIG 2001), Proceedings, volume 2196 of Lecture Notes in Computer Science, pages 2–44.
Springer, 2001.

3

Multimodal Dependent Type Theory

Daniel Gratzer1, G. A. Kavvos1, Andreas Nuyts2, and Lars Birkedal1

1 Aarhus University, Denmark
2 imec-DistriNet, KU Leuven, Belgium

Abstract

We introduce MTT, a dependent type theory which supports multiple modalities. MTT
is parametrized by a mode theory which specifies a collection of modes, modalities, and
transformations between them. We show that different choices of mode theory allow us
to use the same type theory to compute and reason in many modal situations, including
guarded recursion, axiomatic cohesion, and parametric quantification.

In order to increase the expressivity of Martin-Löf Type Theory we often wish to extend it
with new connectives, and in particular with unary type operators that we call modalities or
modal operators. The addition of a modality to a dependent type theory is a non-trivial exercise:
modal operators often interact with the context of a type or term in a complicated way, and
näıve approaches lead to undesirable interplay with other type formers and substitution. This
work is concerned with the development of a systematic approach to the formulation of type
theories that feature multiple modalities.

Rather than designing a new dependent type theory for some preordained set of modalities,
we will introduce a system that is parametrized by a mode theory, i.e. an algebraic specification
of a modal situation. This system, which we call MTT, solves two problems. First, like Licata
et al. [3, 4], we address the lack of generality of state-of-the-art solutions in modal type theory.
By instantiating MTT with different mode theories, we show that it can capture a wide class
of situations. Some of these, e.g. the one for guarded recursion, lead to a previously unknown
system that improves upon earlier work. Second, the predictable behavior of our rules allows
us to prove metatheoretic results about large classes of instantiations of MTT at once. For
example, our main metatheoretic result—viz. canonicity—applies irrespective of the chosen
mode theory.

MTT is not just multimodal, but also multimode [3]. That is, each judgment of MTT can
be construed as existing in a particular mode. All modes have some things in common—e.g.
there will be dependent sums in each—but some might possess distinguishing features. From
a semantic point of view, different modes correspond to different context categories. In this
light, modalities intuitively correspond to functors between those categories: in fact, they will
be structures slightly weaker than dependent right adjoints (DRAs) [2].

At a high level, MTT can be thought of as a machine that converts a concrete description of
modes and modalities into a type theory. This description, which is often called a mode theory,
is given in the form of a small strict 2-category [6, 4] using the following correspondence:

object ∼ mode

morphism ∼ modality

2-cell ∼ natural map between modalities

In order to describe the syntax of MTT, we fix a strict 2-categoryM. At each mode m ∈M
we have a standard Martin-Löf Type Theory. For example, the judgment Γ ctx @m states that
Γ is a well-formed context in mode m.

Multimodal Dependent Type Theory Gratzer, Kavvos, Nuyts, and Birkedal

The modal structure of MTT follows a Fitch-style discipline: each morphism µ : m→ n of
M induces an operation on contexts in the reverse direction. We will denote this by a lock :

cx/lock

Γ ctx @m

Γ,µµ ctx @n

These lock operations come with equations that make them contravariantly functorial in the
modality µ : m→ n. Each modality also induces a modal operator 〈µ | −〉 on types. Intuitively,
µµ behaves like a left adjoint to 〈µ | −〉. Just as with DRAs [2], the MTT formation and
introduction rules for modal types effectively transpose types and terms across this adjunction:

tp/modal

Γ,µµ ` A type @n

Γ ` 〈µ | A〉 type @m

tm/modal-intro

Γ,µµ `M : A@n

Γ ` modµ(M) : 〈µ | A〉@m

In order to obtain a well-behaved syntax, every variable in the context will be annotated with
a modality, i.e. will be of the form x : (µ | A). Intuitively a variable x : (µ | A) is the same as
a variable x : 〈µ | A〉, but the annotations—signalled by rounded parentheses—are part of the
structure of a context. The variable rule allows us to use x : (µ | A) if the locks to its right are
‘strong enough,’ and that strength is witnessed by a 2-cell of M:

tm/var

µ : m→ n α : µ⇒ locks(Γ1)

Γ0, x : (µ | A),Γ1 ` xα : Aα
@m

Here, locks(Γ1) composes all the modalities of the locks in Γ1, and (−)α for α : µ ⇒ ν is
an admissible operation such that Γ,µµ ` A type @m implies Γ,µν ` Aα type @m. Finally,
the elimination rule, which is reminiscent of the dual context style [5], navigates the difference
between x : 〈µ | A〉 and x : (µ | A) by essentially implementing a kind of modal induction:

tm/modal-elim

ν : m→ o µ : n→ m Γ, x : (ν | 〈µ | A〉) ` B type1 @ o
Γ,µν `M0 : 〈µ | A〉@m Γ, x : (ν ◦ µ | A) `M1 : B[modµ(x)/x] @ o

Γ ` letν modµ(x)←M0 in M1 : B[M0/x] @ o

In addition to introducing the syntax of MTT, we also formulated its semantics in the
style of Awodey’s natural models [1]. We showed that MTT may be used to reason about
several important modal settings, and proven basic metatheorems about its syntax including
canonicity, which we show via categorical gluing. In the future we plan to further develop the
metatheory of MTT. We specifically hope to prove that MTT enjoys normalization, and hence
that type-checking is decidable—provided that the mode theory is. This result would pave the
way to a practical implementation of a multimodal proof assistant.

Acknowledgments

Alex Kavvos was supported in part by a research grant (12386, Guarded Homotopy Type The-
ory) from the VILLUM Foundation. Andreas Nuyts holds a PhD Fellowship from the Research
Foundation - Flanders (FWO). This work was supported in part by a Villum Investigator grant
(no. 25804), Center for Basic Research in Program Verification (CPV), from the VILLUM
Foundation.

2

Multimodal Dependent Type Theory Gratzer, Kavvos, Nuyts, and Birkedal

References

[1] Steve Awodey. Natural models of homotopy type theory. 28(2):241–286, 2018.

[2] Lars Birkedal, Ranald Clouston, Bassel Mannaa, Rasmus Ejlers Møgelberg, Andrew M.
Pitts, and Bas Spitters. Modal dependent type theory and dependent right adjoints. 2018.
To appear in Mathematical Structures in Computer Science.

[3] Daniel R. Licata and Michael Shulman. Adjoint Logic with a 2-Category of Modes, pages
219–235. Springer International Publishing, 2016.

[4] Daniel R. Licata, Michael Shulman, and Mitchell Riley. A Fibrational Framework for Sub-
structural and Modal Logics. In Dale Miller, editor, 2nd International Conference on Formal
Structures for Computation and Deduction (FSCD 2017), volume 84 of Leibniz International
Proceedings in Informatics (LIPIcs), 2017.

[5] Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathe-
matical Structures in Computer Science, 11:511–540, 2001.

[6] Jason Reed. A Judgmental Deconstruction of Modal Logic. 2009. Manuscript.

3

A distributed term assignment for dual-intuitionistic logic

Gianluigi Bellin1 and Luca Tranchini2

1 University of Verona, gianluigi.bellin@univr.it
2 University of Tübingen, luca.tranchini@gmail.com

Bi-intuitionistic logic [6] is a conservative extension of intuitionistic logic with a binary oper-
ator of subtraction A−B (informally read as “A but not B”). Although in (Kripke-)semantics
subtraction is easily definable as the dual of intuitionistic implication, the proof theory of bi-
intuitionistic logic turns out to be a very delicate matter: as of today no plain sequent-calculus
enjoying cut-elimination is known, although several well-behaving “enriched” sequent calculi
has been recently developed (for nested, labelled and deep inference calculi see [2, 4, 5]).

In [3], Crolard proposes a term-assignment for bi-intuitionistic logic by first defining in the
classical λµ-calculus A − B as A ∧ ¬B, and then imposing some restrictions on the typing
rules to “constructivize” the logic. According to Crolard, such restrictions capture a notion of
“safety” for the co-routines encoding the proofs of A − B. However, the details of Crolard’s
presentation are rather intricate, and the notion of safe co-routine is not very intuitive.

In the present paper, we propose a term-assignment for the subtractive fragment of Crolard’s
system (i.e. in wich subtraction is the only operator) using primitive operations with three
distinctive features. First, our term calculus has a distributed nature: whereas in the λµ-
calculus all conclusions but one are µ-variables, in our calculus the computational content is
distributed among the conclusions, i.e. to each conclusion one assigns a possibly complex term.
Second, reduction is also distributed, in the sense that the reduction acts globally on a set of
terms, and not on a single one. Third, typing judgements have the form x : C I ∆, i.e. a set of
terms is typed by declaring a single variable (somewhat dualizing the simply typed λ-calculus,
where a single term is typed declaring a set of variables). A version of the calculus for a linear
variant of subtraction was presented in [1].

Given an infinite set of variables x, y, z, . . ., terms, list of terms and error messages are
defined as follows:

Terms t, s, r ::= x | mkc(t, x) | x〈t〉
Lists of terms l ::= [] | l · t
Error messages e, f ::= err(t | x 7→ l)

The free occurrences of x in l are bound in err(t | x 7→ l), and the displayed occurrences of x
(though not the free occurrences of x possibly occurring in t) are bound in mkc(t, x) and x〈t〉.

Clearly the set of free variables of each term contains exactly one free variable. As it will
be clear from the typing rules below, the same is true of error messages occurring in a typing
derivation: the only error messages err(t | x 7→ l) we will consider will be those in which all
terms in l depend on x, and hence, according to the stipulation on the free variables just given,
the only free variable in an error message err(t | x 7→ l) will be the free variable of t.

The result of substituting a term s for a variable x in a term t (resp. list of terms l, error
message e), notation tJs/xK (resp. lJs/yK, eJs/yK) is defined in the obvious way.

Typing judgements have the form x : C I ∆, where the x : C is called the antecedent, and
∆ the succedent. ∆ is a set of typed terms and error messages {t1 : A1, . . . , tn : An, e1, . . . , en}.

The typing rules are the following, where if l = t1 · . . . · tn we write l : B,∆ for t1 : B, . . . , tn :
B,∆ (or simply for ∆ if n = 0):

Axiom
x : A I x : A

x : C I t : A , ∆
−I

x : C I mkc(t, y) : A−B , y〈t〉 : B , ∆

y : A I l : B , ∆
−E

x : A−B I err(x | y 7→ l) , ∆Jy〈x〉/yK

A distributed term assignment dual-intuitionistic logic Bellin and Tranchini

If there is a derivation of x : C I ∆ we say that ∆ is a family of typed terms under the
variable declaration x : C. The different members of a family can be thought of encoding alter-
native hypothetical, or defeasible, scenarios that can be computed from the variable declaration.
In the introduction rule, the premise of the rule says that given a proof of C we could compute
beside certain alternative hypothetical scenarios ∆, a further one in which we constructed a
proof t of A. The rule tells us that this scenario can be split up into two alternative scenarios,
one in which a proof of B has been constructed (possibly using the proof t of A), and one in
which no proof of B can be obtained (this is the scenario represented by the formula A − B
in the succedent of the conclusion). In the elimination rule, the premise tells us that given a
proof y of A we could construct certain alternative hypothetical scenarios ∆ and further ones
in each of which we have obtained a proof of B. From this, given a proof x of A−B we could
construct variants of the scenarios ∆ (since when one has a proof of A−B one has one of A as
well), however, the scenarios in which we had obtained proofs of B are “incompatible” with our
having a proof of A−B. These are therefore “suppressed” in the succedent of the conclusion of
the rule and replaced by an error message registering the incompatibility between the threads
of computation y 7→ l leading from the proof of A to those of B, and the proof x of A−B.

Redexes are error message of the form err(mkc(t, x) |y 7→ l). In contrast with what happens
in the λ-calculus, reduction does not simply rewrite terms on terms, but family of typed terms
onto family of typed terms and it can be expressed as follows:

x : C I t : B , ∆ z : B I l : A , ∆′
β

x : C I err(mkc(t, y) | z 7→ l) , ∆ , ∆′Jz〈mkc(t,y)〉/zK , y〈t〉 : A ∆ , ∆′Jt/zK , lJt/zK : A

A full axiomatization of β-reduction is obtained by adding further rules expressing the fact
that β-reduction is a congruence. Subject reduction holds in the following form:

Lemma 0.1. If x : C I ∆ ∆∗, then each term in ∆∗ has the same type as one in ∆.

We prove strong normalization through an embedding into the simply typed λ-calculus.
In particular, we define an embedding ()◦ that leaves atomic types untouched and that

maps A − B onto B◦ ⊃ A◦ and such that for every family of typed terms ∆ ≡ e1, . . . , em, t1 :
A1, . . . , tn : An under the variable declaration x : C and for every variable declaration Γ ≡
z1 : A◦1, . . . , zn : A◦n, ∆◦Γ is a λ-term of type C◦ under the variable declaration Γ.

Proposition 0.2. If x : C I ∆ ∆∗, where ∆ ≡ e1 . . . en, t1 : A1, . . . tm : Am then for all
variable declarations Γ ≡ y1 : A◦1, . . . ym : A◦m we have that y1 : A◦1, . . . , ym : A◦m B ∆◦Γ ∆∗◦Γ .

The embedding above consists in a sort of duality between the simply typed λ-calculus
and our distributed term calculus, which in turn suggests an alternative way of using the
latter, namely to encode an intuitionistic notion of refutability rather than a dual-intuitionistic
notion of provability. Graphically, the idea can be exemplified by using our terms to decorate
Prawitz’s rules of intuitionistic natural deduction from the bottom to the top, thereby expressing
a backwards reading of intuitionistic rules: given refutations of the conclusions one computes
refutations of the premises:

mkc(t, x) : A ⊃ B x〈t〉 : A

t : B

err(t | x 7→ si)

[s∗i : A]

x〈t〉 : B

t : A⊃B
where the error message err(t | x 7→ si) plays the role of a discharge index in linking the
assumptions with the inference rule at which they are discharged.

2

A distributed term assignment dual-intuitionistic logic Bellin and Tranchini

References

[1] Gianluigi Bellin. Categorical proof theory of co-intuitionistic linear logic. Logical Methods in
Computer Science, 10(3), 2014.

[2] Linda Buisman and Rajeev Goré. A cut-free sequent calculus for bi-inutitionistic logic. In
N. Olivetti, editor, TABLEAUX 2007. Springer, 2007.

[3] Tristan Crolard. A formulae-as-types interpretation of subtractive logic. Journal of Logic and
Computation, 14(4):529–570, 2004.

[4] Lúıs Pinto and Tarmo Uustalu. Proof search and counter-model construction for bi-intuitionistic
propositional logic with labelled sequents. In Martin Giese and Arild Waaler, editors, Automated
Reasoning with Analytic Tableaux and Related Methods, volume 5607 of Lecture Notes in Computer
Science, pages 295–309. Springer, 2009.

[5] Linda Postniece. Deep inference in bi-intuitionistic logic. In H. Ono, M. Kanazawa, and
de Queiroz R., editors, Logic, Language, Information and Computation. WoLLIC 2009. Springer.

[6] Cecylia Rauszer. A formalization of the propositional calculus of H-B logic. Studia Logica, 33(1):23–
34, 1974.

3

11 Logic, category and types

142

An Induction Principle for Cycles

Nicolai Kraus and Jakob von Raumer

Consider a graph. Imagine we want to prove a certain property for every path within the
graph, where a path is a sequence (v0, e0, v1, e1, . . . , vk) of edges ei from the vertex vi to the
vertex vi+1. The obvious first approach is induction: We show that the property holds for the
empty path, and that adding an edge at the end of a path preserves the property. We now
make the situation more challenging by changing it slightly:

Problem 1. Imagine we want to prove a certain property for every cycle, i.e. every closed path
within the graph (a path satisfying the condition v0 = vk). How can this be approached?

An example for a property could be the statement that every vertex in a cycle has even
degree, something which is not true for paths in general. Straightforward induction does not
work in the situation of Problem 1 anymore, since a cycle can in general not be created from a
smaller cycle by adding an edge (cycles are simply not inductively generated).

This situation occurs in the context of coherence conditions in homotopy type theory.1

Given a set (a 0-truncated type) A and a binary proof-relevant relation on A, i.e. a type
family (;) : A→ A→ Type, recall that the property of the set-quotient A/; is that a function
g : A/;→ B is uniquely given by a function f : A→ B which respects ;, i.e. comes together
with h : Π{x, y : A}.(x ; y)→ f(x) = f(y). This property is only guaranteed as long as B is
a set. Sometimes, this condition not satisfied. We show in the paper [3] the following result:

Lemma 2. If B is a 1-type and A is a set, then a function g : A/;→ B is uniquely given by
a triple (f, h, c) with f , h as above, and c witnessing that any closed zig-zag (or simply cycle)
of ; is sent by h to a trivial equality refl in B.

The coherence condition c says, for example, that if we are
given v, w, x, y, z : A with p : v ; w, q : x ; w, r : y ; x,
s : y ; z, t : v ; z as in the diagram on the right, then
the equality h(p) � h(q)−1 � h(r)−1 � h(s) � h(t)−1 : f(v) = f(v)
is equal to reflf(v). v

w

x

y

z

p

qr

s
t

An example for a set-quotient in homotopy type theory is the explicit construction of the
free group as in [6, Thm 6.11.17]. For a given set Y , we set A :≡ List(Y + Y). We think of the
left copy of Y as positive and the right as negative, and write −1 : Y + Y → Y + Y for the
“swap” operation. The relation of interest is then generated by

[x0, . . . , xi−1, xi, x
−1
i , xi+1, . . . , xn] ; [x0, . . . , xi−1, xi+1, . . . , xn], (1)

and List(Y + Y)/; has the correct universal property of the free group on Y . It is an open
question (a variation of the long-standing unsolved problem recorded in [6, Ex 8.2]) whether
List(Y + Y)/ ; is equivalent to the free higher group, namely the loop space of the wedge
of Y -many circles; details can be found in [3]. Constructing functions from the set-quotient
List(Y +Y)/; into a 1-type is the key to showing an approximation to the mentioned question.
To do this, we would like to apply Lemma 2. However, on its own, this lemma is not useful

1The situation described in the first paragraph is of course reminiscent of a central observation of (homotopy)
type theory, namely the fact that the equality eliminator J (a.k.a. path induction) does not imply Streicher’s K
(which one could call loop induction): with J , we can only replace an equality by refl if it is a general equality
between two different points. This is not the connection that we study in this work.

An Induction Principle for Cycles Kraus, von Raumer

precisely because of Problem 1: the condition that any cycle is sent to a trivial equality is hard
to verify. Overcoming this difficulty is the motivation for this talk. The title of the current talk
description alludes to an approach to Problem 1 that we present in [3].

If we look at (1) (and the relevant relations in similar examples), we can observe that
the relation ; has two properties (one of them proof-relevant) that are familiar from the
theory of reduction systems in general (for example, see [1]). First, (1) is co-wellfounded (a.k.a.
Noetherian): this is clear, since we can only reduce a finite number of times until no redexes of
the form [x, x−1] are left. The general definition is:

Definition 3 (accessibility [6, Chp. 10.3]). The family acc; : A→ Type is generated inductively
by a single constructor step : Π(a : A).(Π(x : A).(x ; a) → acc;(x)) → acc;(a). We say that
a is accessible if we have acc;(a), and if all a are accessible, then ; is wellfounded. We say
that ; is Noetherian if ;op is wellfounded.

Second, the relation (1) is locally confluent : If we have two redexes and reduce one, we can
still reduce the other (or both reductions arrive at the same result). In general:

Definition 4 (local confluence). We say that ; is locally confluent if, for any span, there is a
matching extended cospan. This means that, given x, y, z : A with x ; y and x ; z, we have
w : A such that y ;∗ w and z ;∗ w.

The key construction in our paper [3] is the following. Starting from a relation ; on A,
we construct a new relation ;◦ on the type of cycles of ;. This new relation is given by
a variation of the multiset extension, which is known to preserve wellfoundedness (a proof
essentially building on Definition 3 has been given by Nipkow [5]). In a nutshell, for cycles α
and β, we have α ;◦ β if α can be transformed into β by removing one vertex (one element
a0 : A) and replacing it by a finite number b1, . . . , bk of vertices such that we have a0 ; bi for
all i.

Lemma 5. If ; is Noetherian on A, then so is ;◦ on the type of cycles. If ; is in addition
locally confluent, then any cycle α can be split (see illustration below) into a cycle β with
α ;◦ β, and a cycle which is given by a single span and local confluence.

Let now a type family Q indexed over cycles be given (e.g. the type witnessing that any
cycle gets mapped to the trivial equality, as in Lemma 2). Under some natural assumption (Q
respects “merging” and “rotating” of cycles), the above lemmas give us the following principle:

Theorem 6 (Noetherian cycle induction [3]). Assume ; is Noetherian and locally confluent.
Assume further that Q is inhabited at every empty cycle and at every cycle that comes from a
span and the local confluence property. Then, Q is inhabited at every cycle.

On the right is an illustration of Noetherian cycle induction.
Assume we want to show a property Q for the big octagon
a0 − a7. We first “remove” the confluence cycle spanned by
a2 ;a3 ; a4 to get the nonagon consisting of a0−a9 without
a3 but with the dashed edges: we now have more vertices, but
the nonagon is smaller than the octagon in the order ;◦. In
the next step, we “remove” the confluence cycle spanned by
a9 ;a4 ; a5, and so on, until the empty cycle is reached.

This induction principle allows us to approach questions
involving set-quotients such as the problem of the free higher
group mentioned above; in particular, we can re-prove the
result of [2]. We also believe that there are use-cases outside
of type theory, e.g. for graph rewriting as in [4].

a0
a1

a2

a3

a4
a5

a6

a7a8

a9 a10

An Induction Principle for Cycles Kraus, von Raumer

References

[1] Gérard P. Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. J. ACM, 27:797–821, 1980.

[2] Nicolai Kraus and Thorsten Altenkirch. Free higher groups in homotopy type theory. In Symposium
on Logic in Computer Science (LICS 2018), pages 599–608. ACM, 2018.

[3] Nicolai Kraus and Jakob von Raumer. Coherence via wellfoundedness: Taming set-quotients in
homotopy type theory. ArXiv e-prints, 2020.

[4] Michael Löwe. Van-Kampen pushouts for sets and graphs. Technical report, 2010. Fachhochschule
für die Wirtschaft Hannover.

[5] Tobias Nipkow. An inductive proof of the wellfoundedness of the multiset order. Unpublished note,
1998.

[6] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. http://homotopytypetheory.org/book/, 2013.

Metatheoretic proofs internally to presheaf categories∗

Rafaël Bocquet1, Ambrus Kaposi1, and Christian Sattler2

Eötvös Loránd University, Budapest, Hungary
bocquet@inf.elte.hu and akaposi@inf.elte.hu

University of Nottingham, United Kingdom
sattler.christian@gmail.com

Introduction Proofs of the metatheoretic properties of dependent type theories and other
typed logics and languages, such as proofs of canonicity, normalization, gluing, parametricity
or various translations between theories, involve complicated inductions over the syntax of the
theory. We present a way to structure such proofs by working in the internal type-theoretic
languages of suitable presheaf categories.

Internal models of type theory We use categories with families (CwFs) [4, 2] equipped
with additional structure as the models of our type theories. They consist of a category C,
equipped with presheaves of types and terms, objects representing the empty context and
context extensions, along with natural transformations for each type-theoretic operation and
equations between them. Most of the additional structure on C can concisely be described in
the type-theoretic internal language of the presheaf category Ĉ. This observation is used in
some of the existing general definitions of type theories [1, 9]. For example, the presheaves of

types and terms, and the N and Π type formers can be specified in the internal language of Ĉ
as follows:

Ty : Set
Tm : Ty→ Set
N : Ty
Π : (A : Ty)→ (B : Tm A→ Ty)→ Ty

The type (Tm A→ Ty) of the argument B of Π is a presheaf function type: using the internal
language of presheaf categories is a way to interpret higher-order abstract syntax (HOAS). Π-
types are usually given externally by a map ΠΓ : (A : TyΓ)→ TyΓ�A → TyΓ, natural in Γ, but
the properties of the context extension operation (−�−) imply that the internal and external
definitions are equivalent.

Only the empty context and the context extension operations can not directly be described
internally, unless we use the interpretation of crisp type theory [8, 6] in Ĉ and its comonadic
modality [.

Internal dependent models The generalized algebraic presentation of CwFs automatically
provides an initial model S satisfying an induction principle: there is a dependent section from S
to any dependent model over S. The definition of dependent model can be derived mechanically
from the QIIT-signature presenting the type theory [5]. By applying a similar transformation

∗The first author was supported by the European Union, co-financed by the European Social Fund (EFOP-

3.6.3-VEKOP-16-2017-00002). The second author was supported by the ÚNKP-19-4 New National Excellence
Program of the Ministry for Innovation and Technology and by the Bolyai Fellowship of the Hungarian Academy
of Sciences. The third author was supported by USAF grant FA9550-16-1-0029.

Metatheoretic proofs internally to presheaf categories R. Bocquet, A. Kaposi, C. Sattler

to the internal definition of models, we define a notion of dependent model internal to Ŝ:

Ty• : Ty→ Set
Tm• : {A}(A• : Ty• A)(a : Tm A)→ Set
N• : Ty• N
Π• : {A}(A• : Ty• A){B}(B• : {a}(a• : Tm• A• a)→ Ty• (B a))→ Ty• (Π A B)

Internal and external dependent models do not exactly correspond to each other, but we
can still reconstruct an external dependent model from any internal one, and then obtain,
externally, a dependent section of the reconstructed external model.

A proof of canonicity based on logical predicates can be given as an internal dependent
model in the internal language of Ŝ:

Ty• A :≡ Tm A→ Set
Tm• A• :≡ λ(a : Tm A) 7→ A• a
N• :≡ λ(n : Tm N) 7→ (m : N)× (n = sucm zero)
Π• A• B• :≡ λ(f : Tm (Π A B)) 7→ (a : Tm A)(a• : A• a)→ B• (app f a)

Internal induction principles The presheaf category Ŝ is not a nice setting for more com-
plicated proofs, such as normalization proofs: it forces all of our constructions to be stable under
all substitutions, but normal forms are only stable under renamings. To fix this, we change the
base category. For normalization, we work in the presheaf category Ĝ over the comma category
G = (S ↓ F), where F : R → S is the CwF morphism from the CwF of renamings R to S.

The presheaf category Ĝ has many good properties: the CwF structures of R and S can
faithfully be transported over G, and the CwF morphism F : R → S can also faithfully be
encoded. Furthermore, we can distinguish in Ĝ the presheaves that come from R̂ or Ŝ; and
call them R-discrete or S-discrete presheaves. Type-theoretically, they are accessible reflective
subuniverses of the universe of all presheaves. Moreover, the R-/S-discrete presheaves can be

identified with the discrete types arising from interpretations of spatial type theory [8] in Ĝ.
In particular, we have an adjoint pair of modalities (2 a ♦), where the comonadic modality
2 classifies the R-discrete presheaves. This means that we can reuse the theory of modalities
developed in [7, 8] in this setting.

We can then use the 2 modality to define F -relative internal dependent models, which encode
inductions over the syntax whose results are only stable under renamings. We can define and
prove an induction principle for F -relative dependent models.

A recent normalization proof by Coquand [3] can be translated to this framework by defining
a suitable F -relative dependent model. We can prove normalization and the decidability of
equality for types and terms fully internally, without ever working explicitly with contexts,
substitutions or renamings in the proof.

Agda formalization1 We have formalized in Agda internal proofs of canonicity and nor-
malization for a reasonably large dependent type theory (including Π-types with the η rule,
booleans, natural numbers, identity types and a universe closed under the other type formers).

References

[1] Paolo Capriotti. Models of type theory with strict equality. PhD thesis, University of Nottingham,
UK, 2017.

1https://gitlab.com/RafaelBocquet/internal_metatheory/tree/master/Agda

2

Metatheoretic proofs internally to presheaf categories R. Bocquet, A. Kaposi, C. Sattler

[2] Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,
simply typed, and dependently typed. CoRR, abs/1904.00827, 2019.

[3] Thierry Coquand. Canonicity and normalization for dependent type theory. Theor. Comput. Sci.,
777:184–191, 2019.

[4] Peter Dybjer. Internal type theory. In Stefano Berardi and Mario Coppo, editors, Types for Proofs
and Programs, International Workshop TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers,
volume 1158 of Lecture Notes in Computer Science, pages 120–134. Springer, 1995.

[5] Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. PACMPL, 3(POPL):2:1–2:24, 2019.

[6] Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. Internal universes in models
of homotopy type theory. In Hélène Kirchner, editor, 3rd International Conference on Formal
Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume 108
of LIPIcs, pages 22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[7] Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. CoRR,
abs/1706.07526, 2017.

[8] Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type theory. Mathe-
matical Structures in Computer Science, 28(6):856–941, 2018.

[9] Taichi Uemura. A general framework for the semantics of type theory. CoRR, abs/1904.04097,
2019.

3

Elementary doctrines as coalgebras

Jacopo Emmenegger1, Fabio Pasquali2, and Giuseppe Rosolini3

DIMA, Università di Genova, Italy
1jacopo.emmenegger@edu.unige.it 2pasquali@dima.unige.it 3rosolini@unige.it

Abstract

We show that the inclusion of the 2-category of elementary doctrines into that of
primary doctrines is 2-comonadic. Coalgebras are doctrines of descent data on equivalence
relations. Several examples are mentioned.

Lawvere’s hyperdoctrines mark the beginning of applications of category theory in logic, and
they provide a very clear algebraic tool to work with syntactic theories and their extensions
in logic. Recall that a primary doctrine is a functor P : C op // Pos such that (i) the base
category C has finite products, (ii) for every object A of C , the poset P (A) has finite meets
and, (iii) for every arrow f : A // B, the monotone function f∗ = P (f) : P (B) // P (A), called
reindexing along f , preserves finite meets.

A logical theory T in a multi-sorted language with conjunctions gives rise to a primary
doctrine PT as follows. The base category consists contexts and context morphisms, i.e. finite
lists of typed variables and finite lists of typed terms. Composition is given by substitution of
terms in terms and product is concatenation of contexts. The poset PT (x1 : S1, . . . , xn : Sn)
consists of formulas in the context (x1 : S1, . . . , xn : Sn), where

φ ≤ ψ iff x1 : S1, . . . , xn : Sn |φ `T ψ.

Meets are given by conjunctions and reindexing along a list of terms is given by substitution
of terms in formulas. Conversely, any primary doctrine gives rise to a theory in a multi-sorted
language with conjunctions.

A primary doctrine is elementary when it has left adjoints to reindexing along parametrised
diagonals I ×A // I ×A×A satisfying suitable Beck-Chevalley and Frobenius stability condi-
tions, see [8]. A more concrete description is provided by the following characterisation, which
we could find no reference for. A primary doctrine P : C op // ISL is elementary if and only if
for each object A in C , there is an object dA in P (A×A) such that

(a) pr∗1(α) ∧ dA ≤ pr∗2(α) for every A and every α in P (A);

(b) >A ≤ 〈idA, idA〉∗(dA) for every A;

(c) 〈pr1,pr3〉∗(dA) ∧ 〈pr2,pr4〉∗(dB) ≤ dA×B for every A and B.

When the language of a theory T has equality, the associated doctrine PT is elementary
and the object dA is the (equivalence class) of the equality predicate. Conversely, the theory
associated to an elementary doctrine has equality.

A morphism of primary doctrines P // P ′ is a product-preserving functor F between the
base categories together with a meet-preserving natural transformation P . // P ′F . A morphism
of doctrines is the same thing as an interpretation between the associated theories.

It is possible to arrange primary doctrines in a 2-category PD, which is equivalent to the
2-category of faithful fibrations with fibred products, see [4, 16]. The equivalence restricts
between the 2-category of elementary doctrines ED and the 2-category of faithful fibrations
with equality. A morphism in PD between elementary doctrines is a morphism in ED, i.e. the
associated interpretation of theories preserves equality, if and only if it preserves the object dA
for every A.

Elementary doctrines as coalgebras Emmenegger, Pasquali and Rosolini

In [7] an extension of a logical theory to allow quotient types is described in terms of a
completion (−)q:ED // QED, where QED is the full 2-subcategory of ED on elementary
doctrines with quotients. In [17] the completion is proved to be pseudo-monadic, that is,
quotients are (pseudo) algebraic structure on elementary doctrines. In [12] the second author
analysed that construction and showed that in fact it provided a right adjoint R:PD // ED
to the 2-full inclusion of elementary doctrines into primary doctrines. The base category of the
doctrine R(P) consists of equivalence relations ρ ∈ P (A × A) and extensional functions, and
the fibres are subposets on descent data, i.e. those α ∈ P (A) such that pr∗1α ∧ ρ ≤ pr∗2α.

Write T :PD // PD for the 2-comonad induced by the adjunction and T -Coalg for the
2-category of coalgebras. We extend the analysis in [12] and prove the following.

Theorem. The canonical comparison 2-functor K:ED // T -Coalg is an isomorphism.

The embedding ED �
�
// PD is then 2-comonadic. It follows that the monad on T -Coalg

associated to the right-hand vertical adjunction below is isomorphic, via K, to the monad M
on ED generated by (−)q.

QED �
�

//
>

(−)q
oo

ED

M

��
Roo
>� � // PD

T

vv

Ps-M-Alg
��

>

?�

OO

&&

∼

T -Coalg
��

>
?�

OO

K
''

∼

The functor R occurs in a number of different situations, as suggested by the following
examples.

1. Several constructions of categories of (partial) equivalence relations can be factored through
the functor R, in combination with other completions of doctrines, see [8, 9, 10]. Major
examples are the exact completion of a regular category and of a category with (weak)
finite limits [1], the tripos-to-topos construction [3] and various forms of setoid model of
dependent type theories such as Martin-Löf type theory (MLTT) [11], the Calculus of
Constructions [2] and the Minimalist Foundation [6]. The last two examples are instances
of quotient completions that do not produce exact categories.

2. A first order theory T eliminates imaginaries in the sense of Poizat [13] if, for every
formula x, y : A | ρ(x, y) which is provably in T an equivalence relation, there is a formula
x : A, z : B |φ(x, z) such that

T ` (∀x : A)(∃!z : B)(∀y : A)(ρ(x, y)↔ φ(x, z)).

Given a first order theory T , the (first order) theory T associated to the doctrine R(PT)
eliminates imaginaries. Moreover, every model of the original theory T can be turned
functorially into a model of T and, when T has equality, this extension is conservative.
In particular, it enjoys the same properties of Shelah’s T eq construction, see [15], which
may be regarded as the concatenation of R with other constructions.

3. Other examples come from generalisations of metric spaces as in [5] and [14]. For an inf-

semilattice H consider the primary doctrine H(−): Set op // ISL whose fibres are posets
of H-valued functions. For H the positive real line [0,∞) with the opposite order, the

base category of R(H(−)) is the category of pseudo ultrametric spaces. Taking H to be

the closed unit interval [0, 1] with the opposite of order, the base category of R(H(−)) is
the category of 1-bounded pseudo ultrametric spaces.

2

Elementary doctrines as coalgebras Emmenegger, Pasquali and Rosolini

References

[1] A. Carboni and E.M. Vitale. Regular and exact completions. J. Pure Appl. Algebra, 125:79–117,
1998.

[2] T. Coquand and G. Huet. The calculus of constructions. Inform. and Comput., 76:95–120, 1988.

[3] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. Tripos Theory. Math. Proc. Camb. Phil. Soc.,
88:205–232, 1980.

[4] B. Jacobs. Categorical Logic and Type Theory, volume 141 of Studies in Logic and the foundations
of mathematics. North Holland Publishing Company, 1999.

[5] F.W. Lawvere. Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis.
Milano, 43:135–166, 1973.

[6] M.E. Maietti. A minimalist two-level foundation for constructive mathematics. Ann. Pure Appl.
Logic, 160(3):319–354, 2009.

[7] M.E. Maietti and G. Rosolini. Elementary quotient completion. Theory Appl. Categ., 27:445–463,
2013.

[8] M.E. Maietti and G. Rosolini. Quotient completion for the foundation of constructive mathematics.
Log. Univers., 7(3):371–402, 2013.

[9] M.E. Maietti and G. Rosolini. Unifying exact completions. Appl. Categ. Structures, 23:43–52,
2015.

[10] M.E. Maietti and G. Rosolini. Relating quotient completions via categorical logic. In Dieter Probst
and Peter Schuster (eds.), editors, Concepts of Proof in Mathematics, Philosophy, and Computer
Science, pages 229–250. De Gruyter, 2016.

[11] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984. Notes by G. Sambin of a
series of lectures given in Padua, June 1980.

[12] F. Pasquali. A co-free construction for elementary doctrines. Appl. Categ. Structures, 23(1):29–41,
Feb 2015.

[13] B. Poizat. Une théorie de Galois imaginaire. J. Symbolic Logic, 48(4):1151–1170 (1984), 1983.

[14] J.J.M.M. Rutten. Elements of generalized ultrametric domain theory. Theoret. Comput. Sci.,
170(1):349 – 381, 1996.

[15] S. Shelah. Classification theory and the number of nonisomorphic models, volume 92 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, second
edition, 1990.

[16] T. Streicher. Fibred categories. Available at arXiv:1801.02927, 2019.

[17] D. Trotta. Completions of elementary doctrines and pseudo-distributive laws. Manuscript, sub-
mitted, 2019.

3

Bi-Intuitionistic Types via Alternating Contexts

Ranald Clouston1 and Ian Shillito2

1 Research School of Computer Science, Australian National University, Canberra,
Australia

ranald.clouston@anu.edu.au
2 ian.shillito@anu.edu.au

Bi-Intuitionistic Logic (BIL), introduced in the 1970s by Rauszer [10], extends
intuitionistic propositional logic with a binary operator , dual to →, called exclu-
sion (sometimes subtraction, or co-implication). BIL is a conservative extension of
intuitionistic logic, but the disjunction property does not hold. This suggests that a
proof-theoretic treatment may require multiple conclusions, as for classical logic.

BIL can be given semantics via the usual Kripke models for intuitionistic logic. A
formula φ ψ is satisfied at a point if there exists a predecessor (i.e. a point related
via the converse of the accessibility relation) that satisfies φ but falsifies ψ. In classical
logic, φ ψ can be identified with φ∧¬ψ. The fact that the accessibility relation can
be travelled along in both ways shows that BIL is similar to tense logics.

As with many tense logics, the proof theory of BIL has proved to be notoriously
hard to treat. An early attempt at a standard sequent calculus by Rauszer [9] was
claimed to enjoy cut-elimination. However a counterexample was discovered by Pinto
and Uustalu [8]: the valid sequent φ ` ψ, χ→ ((φ ψ) ∧ χ) is not derivable without
the cut rule. This has led to the development of more exotic proof systems for BIL,
such as display calculi [5], nested sequents [6], labelled sequents [8], and proof nets [12].
The only work that we are aware of that suggests a formulae-as-types interpretation
for BIL is that of Crolard [3]. Unfortunately Crolard states that the cut-elimination
of Rauszer’s sequent calculus follows from his results; therefore his work must be
erroneous, although we are yet to discover the precise source of error.

Crolard’s computational interpretation for BIL was motivated by a desire to sug-
gest control operators powerful enough to express catch and throw operators, but
less powerful than the classical call/cc, which some consider harmful [7]. He uses de
Groote’s type system for classical logic [4] as a basis, with new rules for :

Γ ` ∆,M : φ Γ, x : χ ` ∆, C[x] : ψ

Γ ` ∆, α : ψ,make-coroutineM Cα : φ χ

Γ ` ∆,M : φ ψ Γ, x : φ ` ∆, N : ψ

Γ ` ∆, resumeM withx 7→ N : χ

Crolard must further adjust other rules of de Groote’s system to avoid capturing
classical logic. In particular the lambda rule

Γ, x : φ ` ∆,M : ψ

Γ ` ∆, λx.M : φ→ ψ

is obviously not intuitionistically valid. Restricting this rule to require ∆ to be empty
would be intuitionistically valid, but the calculus would no longer be closed under
substitution, and hence, β-reduction. Crolard instead defines a syntactic notion of
safe terms, based on restrictions on occurrences of variables in the scope of coroutines,
and restricts the type system for BIL to include only those terms.

We can motivate our desire to move beyond Crolard’s approach in the following
ways. First, Crolard claims that his system provides a new proof of a result now known
to be wrong, namely cut-elimination for Rauszer’s sequent calculus. Second, Crolard’s
calculus contains a let rule for cuts which does not appear to be in general eliminable.

Types for Bi-Intuitionistic Logic via Alternating Contexts Clouston and Shillito

Third, the notion of safeness is very complex. Fourth, the safeness restriction is a
global property, rather than local to each typing rule, which forces one to examine
the entire term to verify each application of a rule. This makes it difficult to see how
to conduct backward proof search or local type checking and inference.

Our approach

We are investigating a new approach to types for BIL that is simpler than that of
Crolard, and in particular devoid of global restrictions on terms. We take inspiration
from Fitch-style modal λ-calculi (see e.g. Clouston [1]), and modify the usual notion
of a variable context. A λ-variable context Γ is as usual a comma-separated list of
typed variables, where commas are understood as products. A µ-variable context ∆ is
likewise, except we understand commas as sums, and use Greek letters for the variable
names. An alternating context Θ alternates between λ- and µ- contexts, i.e. we take
the union of

Θλ := Γ | Θµ,Γ Θµ := Θλ J ∆

Here comma is understood as a product, andJ is understood as exclusion. Alternating
contexts with single conclusions are more expressive than standard contexts with
multiple conclusions: in BIL, Γ ` ∆, A is logically equivalent to Γ J ∆ ` A, but types
in alternating contexts with many layers of alternation are not in general equivalent to
some type in context with multiple conclusions (although they are in classical logic).
Our rules for exclusion then become:

Θ J α : ψ,∆ `M : φ

Θ J α : ψ,Θ′ ` make-coroutineM α : φ ψ

Θ `M : φ ψ x : φ J ∆ ` N : ψ

Θ; Θ′ ` resumeM withx 7→ N : χ

where ; is either comma or J, and in both rules Θ′ is a weakening of ∆. By adapting
the other rules of de Groote to both an intuitionistic setting and alternating contexts,
one gets a sound and complete cut-free system for BIL. As a consequence, Pinto and
Uustalu’s counterexample is derivable in our system without the use of a cut rule:

x : φ J α : ψ ` x : φ

x : φ J α : ψ, y : χ `make-coroutinexα : (φ ψ) x : φ J α : ψ, y : χ ` y : χ

x : φ J α : ψ, y : χ ` 〈make-coroutinexα, y〉 : (φ ψ) ∧ χ
x : φ J α : ψ ` λx.〈make-coroutinexα, y〉 : χ→ ((φ ψ) ∧ χ)

This is work in progress, where the most important piece of future work is to
define a reduction relation on terms, inspired by those of de Groote and Crolard,
proving desirable results such as confluence, strong normalisation, and the subformula
property. We also wish to investigate possible computational applications of the
constructors for , following the ideas sketched by Crolard. Finally, we wish to
investigate categorical semantics. The naive semantics, where we take a category
with both Cartesian closure and its dual, are degenerate [2, 11], so as with classical
logic it is an interesting question how to proceed.

Acknowledgments. We are grateful to Luca Tranchini and Gianluigi Bellin for
interesting discussions on this topic, and to the anynomous reviewers for their useful
comments.

2

Types for Bi-Intuitionistic Logic via Alternating Contexts Clouston and Shillito

References

[1] Ranald Clouston. Fitch-style modal lambda calculi. In Christel Baier and Ugo Dal Lago,
editors, Foundations of Software Science and Computation Structures, pages 258–275,
Cham, 2018. Springer International Publishing.

[2] Tristan Crolard. Subtractive logic. Theoretical Computer Science, 254:1-2:151–185,
2001.

[3] Tristan Crolard. A formulae-as-types interpretation of Subtractive Logic. Journal of
Logic and Computation, 14:4:529–570, 2004.

[4] Philippe de Groote. Strong normalization of classical natural deduction with disjunction.
In Samson Abramsky, editor, Typed Lambda Calculi and Applications, pages 182–196,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[5] Rajeev Goré. Dual intuitionistic logic revisited. In Automated Reasoning with Ana-
lytic Tableaux and Related Methods, International Conference, TABLEAUX 2000, St
Andrews, Scotland, UK, July 3-7, 2000, Proceedings, pages 252–267, 2000.

[6] Rajeev Goré, Linda Postniece, and Alwen Tiu. Cut-elimination and proof-search for
bi-intuitionistic logic using nested sequents. In Advances in Modal Logic 7, papers
from the seventh conference on ”Advances in Modal Logic,” held in Nancy, France, 9-12
September 2008, pages 43–66, 2008.

[7] Oleg Kiselyov. An argument against call/cc, 2012. okmij.org/ftp/continuations/

against-callcc.html, Accessed 15 January 2020.

[8] Lúıs Pinto and Tarmo Uustalu. Proof search and counter-model construction for bi-
intuitionistic propositional logic with labelled sequents. In M. Giese and A. Waaler,
editors, Automated Reasoning with Analytic Tableaux and Related Methods, pages 295–
309, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[9] Cecylia Rauszer. A formalization of the propositional calculus of H-B logic. Studia
Logica: An International Journal for Symbolic Logic, 33(1):23–34, 1974.

[10] Cecylia Rauszer. Semi-Boolean algebras and their application to intuitionistic logic with
dual operations. Fundamenta Mathematicae LXXXIII, pages 219–249, 1974.

[11] Michael Shulman, Toby Bartels, and Sridhar Ramesh. cocartesian closed category,
2010. https://ncatlab.org/nlab/show/cocartesian+closed+category, Accessed 15
January 2020.

[12] Luca Tranchini. Natural deduction for bi-intuitionistic logic. Journal of Applied Logic,
25:72–96, 2017.

3

12 Foundations of logic and type theory

155

Proof terms for generalized classical natural deduction

Herman Geuvers1 and Tonny Hurkens

1 Radboud University Nijmegen & Technical University Eindhoven (NL)
herman@cs.ru.nl

2 hurkens@science.ru.nl

We build on the method of deriving natural deduction rules for a connective c from the
truth table tc of c, as it has been introduced in [1, 2]. In [1] we defined the method for both
constructive logic and classical logic, and the constructive case has been studied in more detail,
using proof terms for deductions, in [2, 3]. Here we focus on the classical case: we introduce
proof terms for the classical natural deduction rules that we extract from a truth table and
we use them to study normal deductions. These normal deductions, or deductions in normal
form, should satisfy the sub-formula property, that is: every formula that occurs in a normal
deduction is a sub-formula of the conclusion or one of the assumptions. We will prove this
property by giving a normalization procedure, that transform a deduction into one in normal
form.

A special advantage of our general method of extracting deduction rules from the truth table
is that our deduction rules have a specific format. This allows us to give a generic format for
the proof terms and to study them generally for an arbitrary set of connectives. Our method
also has the advantage (which has already been discussed in [1]), that we can study connectives
“in isolation”: e.g. there are classical rules for implication, which use only implication (and no
negation). In case a connective c is monotonic, the constructive and the classical deduction
rules are equivalent, but in case c is non-monotonic they are not. (Connective c of arity n
is monotonic iff its truth table function tc : {0, 1}n → {0, 1} is monotonic with respect to
the ordering induced by 0 ≤ 1.) We will also show that, if one non-monotonic connective has
classical rules, then all connectives “become” classical. So, e.g. if we have {→,¬} as connectives
with classical rules for → and constructive rules for ¬, we can derive the classical rules for ¬.

Let’s be a bit more precise about the deduction rules and the proof terms. The elimination
rules have the following form. Φ is the formula we eliminate. We have Φ = c(A1, . . . , An) where
c is a connective of arity n and n = k + `. The formula D is arbitrary.

` Φ ` Ai1 . . . ` Aik Aj1 ` D . . . Aj` ` D
el

` D
So, Ai1 , . . . , Aik , Aj1 , . . . , Aj` are the direct sub-formulas of Φ = c(A1, . . . , An). We refer to the
Ai as lemma and the Aj as casus in the derivation rule. The classical introduction rules have
the following form. Again, c is a connective of arity n, Φ = c(A1, . . . , An) and n = k + `. (Of
course, every rule has its own specific sequence i1, . . . , ik, j1, . . . j`.)

Φ ` D ` Ai1 . . . ` Aik Aj1 ` D . . . Aj` ` D
in

` D
For a concrete connective c, we derive the elimination and introduction rules from the truth

table, as described in [1, 2], where every line in the truth table tc gives a deductions rule: an
elimination rule if tc(a1, . . . , an) = 0 and an introduction rule if tc(a1, . . . , an) = 1.

Given a logic with classical derivation rules as derived from truth tables for a set of connec-
tives C, we can define the typed λ-calculus λC , which has judgments Γ ` t : A, where A is a
formula, Γ is a set of declarations {x1 : A1, . . . , xm : Am}, where the Ai are formulas and the

Proof terms for classical natural deduction Geuvers, Hurkens

xi are term-variables such that every xi occurs at most once in Γ, and t is a proof-term. The
abstract syntax for proof-terms, Term, is as follows.

t ::= x | (λy : A.t) · {t ; λx : A.t} | t · [t ; λx : A.t]

where x ranges over variables.

The terms are typed using the following derivation rules, where the first rule is the axiom
rule basically stating that Γ ` A if A ∈ Γ.

if xi : Ai ∈ Γ
Γ ` xi : Ai

Γ ` t : Φ . . . Γ ` pk : Ak . . . Γ, y` : A` ` q` : D . . .
el

Γ ` t · [p ; λy : A.q] : D

Γ, z : Φ ` t : D . . . Γ ` pi : Ai . . . Γ, yj : Aj ` qj : D . . .
in

Γ ` (λz : Φ.t) · {p ; λy : A.q} : D

Here, p is the sequence of terms p1, . . . , pm′ for all the 1-entries in the truth table, and
λy : A.q is the sequence of terms λy1 : A1.q1, . . . , λym : Am.qm for all the 0-entries in the truth
table.

To reduce the proof terms (and thereby the deductions) to normal form, we first perform
permutation reductions and then we eliminate detours. This is similar to the constructive case,
except for now

• a term is in permutation normal form if all lemmas are variables,

• a detour is an elimination of Φ followed by an introduction of Φ.

Note the difference with constructive logic, where a detour is an introduction directly followed
by an elimination. Here it is the other way around, and the introduction need not follow the
elimination directly.

We can be more precise by giving the following abstract syntax N for permutation normal
forms:

N ::= x | (λy : A.N) · {z ; λx : A.N} | y · [z ; λx : A.N],

where x, y, z range over variables. We can obtain a deduction in permutation normal form
by moving applications of an elimination or introduction rule that have a non-trivial lemma
upwards, until all lemmas become trivial: the proof-terms are variables. (This only works for
the classical case!) Now, a detour is a pattern of the following shape

(λx : Φ. . . . (x · [v ; λw : B.s]) . . .) · {z ; λy : A.q}

that is, an elimination of Φ followed by an introduction of Φ, with an arbitrary number of steps
in between. For terms in permutation normal form, we show how detours can be eliminated,
obtaining a term in normal form which satisfies the sub-formula property. It should be noted
that in the above case, this need not be the only occurrence of x, so this elimination is not
straightforward. Another situation is that x may not ocuur at all; that is the simplest situation
and the sub-term (λx : Φ.t) · {z ; λy : A.q} can simply be replaced by t.

2

Proof terms for classical natural deduction Geuvers, Hurkens

References

[1] H. Geuvers and T. Hurkens. Deriving natural deduction rules from truth tables. In ICLA, volume
10119 of Lecture Notes in Computer Science, pages 123–138. Springer, 2017.

[2] H. Geuvers and T. Hurkens. Proof Terms for Generalized Natural Deduction. In A. Abel, F. Nordvall
Forsberg, and A. Kaposi, editors, 23rd International Conference on Types for Proofs and Programs
(TYPES 2017), volume 104 of LIPIcs, pages 3:1–3:39, Dagstuhl, Germany, 2018. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[3] H. Geuvers, I. van der Giessen, and T. Hurkens. Strong normalization for truth table natural
deduction. Fundam. Inform., 170(1-3):139–176, 2019.

3

Did Palmgren Solve a Revised Hilbert’s Program?

Anton Setzer

Dept. of Computer Science, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, UK
a.g.setzer@swansea.ac.uk

In Memory of Erik Palmgren

Abstract

We revisit the article by Palmgren giving an embedding of iterated inductive definitions
into Martin-Löf Type Theory, and explain in what sense it provides an early substantial
solution to a revised Hilbert’s program.

Palmgren’s result didn’t provide a sharp lower bound. We present a restricted version
of Martin-Löf Type Theory with W-type and one universe, for which the embedding of
Palmgren works as well and for which Palmgren’s lower bound is sharp. We give a proof
sketch for the sharpness of this bound.

1 Palmgren’s Result and a Revised Hilbert’s Program

On the UNESCO logic day 2020, the author gave a talk in Swansea dedicated to the memory
of Erik Palmgren, who died recently unexpectedly at young age. Apart from [4] we presented
the article [3], which gave an embedding of the theory of intuitionistic strictly positive iterated
inductive definitions ID<ε0 into the theory ML1W of Martin-Löf Type Theory (MLTT) with
W-type and one Universe. Regarding the proof theoretic strength of ID<ε0 it is known (see [1]
or [5]), that |ID<ε0 | = ψΩ1

(Ωε0) > ψΩ1
(Ωω) = |(Π1

1 − CA)0|. Therefore combining Palmgren’s
result with this proof theoretic result it follows that ML1W proves the consistency of (Π1

1−CA)0.
The latter theory is the strongest of the big five theories of reverse mathematics [9], and it has
been observed in reverse mathematics that most real mathematical theorems can be shown in
one of these big five theories [9].

MLTT has been developed in such a way that we can get as much as possible a direct
insight into the validity of the judgements provable in it. Of course there are limitations – you
cannot get around Gödel’s 2nd Incompleteness Theorem, and there is no absolute consistency
proof of any theory. However, MLTT is the best approximation to a self evident theory, and
can therefore be considered as a good candidate to an extensions of finitary methods in a
revised Hilbert’s program. So if we consider MLTT as a version of extended finitary methods,
and combine Palmgren’s result with the results of proof theory and reverse mathematics, we
obtain a proof using extended finitary methods of the consistency of a theory which allows to
formalise a substantial part of mathematics. Therefore we obtain a substantial solution to a
revised Hilbert’s program.

2 Palmgren’s Result as a Sharp Bound

Palmgren already observed that his result is not sharp and conjectured that autonomous iterated
inductive definitions can be interpreted into ML1W. The author showed in his PhD thesis
[6, 7, 8], that the strength of ML1W is much stronger, namely ψΩ1

(ΩI+ω). When revisiting
Palmgren’s result it became clear in what sense Palmgren wasn’t using the full power of ML1W.
Palmgren didn’t make use of any W-type build on top of U. Furthermore, he made use of

induction on Set-level of the N, but only of induction over W restricted to elements in U. So
we can replace the target theory ML1W used by Palmgren by a weaker theory ML1W− which
restricts the W-type to U. With this restriction Palmgren’s embedding of ID<ε0 works as well,
and we even obtain a sharp bound (details still need to be scrutinised).

Definition. We assume the small logical framework, i.e. the logical framework restricted to
elements of Set. The theory ML1W− is obtained from ML1W by omitting the rules for the
W-type and closure of U under Ŵ and adding the following rules:

• Formation rule for W restricted to U:

a : U b : T a→ U
W a b : Set

• Introduction rule for W:

sup a,b : (r : T a)(s : T (b c)→W a b)→W a b

• Elimination rule for W restricted to elements of U:

c : W a b→ U

step : (x : T a)(y : T (b x)→W a b)(ih : (u : T (b x))→ T (c (y u)))→ T (c (sup a,b x y))

ElimW a b c step : (d : W a b)→ T (c d)

• Equality rule for W:

ElimW a b c step (sup a,b d e) = step d e ((u)ElimW a b c step (e u))

• Closure of U under Ŵ:

Ŵ : (a : U)(b : T a→ U)→ U T (Ŵ a b) = W a b : Set

Theorem. |ML1W−| = |ID<ε0 | = ψΩ1
(Ωε0) .

Proof Sketch (needs to be scrutinised).
For the result |ID<ε0 | = ψΩ1

(Ωε0) see [1] and in modern notation [5], p. 332.
Lower bound |ML1W−| ≥ |ID<ε0 |: The interpretation of Palmgren can be easily adapted

to interpret ID<ε0 into ML1W−: Since we have the full elimination rules for N we can iterate
any operator N → (N → U) → (N → U) up to β times for any β < ε0 by using the same
application of Gentzen’s trick as used by Erik Palmgren.

Each step of the inductive definition can be interpreted as an element N → U by using
the restricted W-type. However, in ML1W− we obtain only induction into elements of U for
the interpreted inductive definitions. This is sufficient, since induction in ID<ε0 is restricted to
formulas in this language, which can be represented as elements of U.

Upper bound |ML1W−| ≤ ψΩ1(Ωε0): By [2] Theorem 8.4 (more modern notation in [5],
p. 332), |W−KPI| = ψΩ1(Ωε0) where (W−KPI) is KPI with full induction scheme INDN over N
but foundation replaced by the foundation axiom I∈. We can build a PER model of ML1W− in
(W−KPI) similarly as in [6, 8]. U, T are interpreted as the union of Uα, Tα over set theoretic
ordinals α. Using I∈ we can show that Uα,Tα are accumulative and form PERs, and that the
interpretation of U,T is closed under the introduction rules for U. The elimination rules for W
can be modelled using I∈. The elimination rule for N can be shown using INDN.

References

[1] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg. Iterated Inductive
Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies, volume 897 of Lecture
Notes in Mathematics. Springer, 1981.

[2] Gerhard Jäger. Theories for Admissible Sets: A Unifying Approach to Proof Theory. Studies in
Proof Theory Lecture Notes, Vol 2. Bibiopolois, Naples, 1987.

[3] Erik Palmgren. Type-theoretic interpretation of iterated, strictly positive inductive definitions.
Archive for Mathematical Logic, 32:75–99, 1992.

[4] Erik Palmgren. On universes in type theory. In G. Sambin and J.M. Smith, editors, Twenty-five
years of constructive type theory: proceedings of a congress held in Venice, October 1995, volume 36,
pages 191 – 204. Oxford University Press, 1998.

[5] Wolfram Pohlers. Chapter 4: Subsystems of set theory and second order number theory. In
Samuel R. Buss, editor, Handbook of Proof Theory, volume 137 of Studies in Logic and the Foun-
dations of Mathematics, pages 209 – 335. Elsevier, 1998.

[6] A. Setzer. Proof theoretical strength of Martin-Löf Type Theory with W-type and one universe.
PhD thesis, Mathematisches Institut, Universität München, Munich, Germany, 1993. Available
from http://www.cs.swan.ac.uk/~csetzer/articles/weor0.pdf.

[7] Anton Setzer. Well-ordering proofs for Martin-Löf type theory. Annals of Pure and Applied Logic,
92:113 – 159, 1998. https://doi.org/10.1016/S0168-0072(97)00078-X.

[8] Anton Setzer. An upper bound for the proof theoretic strength of Martin-löf type theory with
W-type and one universe, 2020. To appear in: Reinhard Kahle, Michael Rathjen (Eds): Festschrift
on the occasion of Schütte’s 111th Birthday. Springer.

[9] Stephen G Simpson. Subsystems of second order arithmetic, volume 1. Cambridge University Press,
2nd edition, 2009.

Axiom C and Genericity for System F

Sergei Soloviev1

IRIT, Paul Sabatier University, Toulouse, France,
soloviev@irit.fr

In a joint paper [1] published in 1993 we presented a genericity theorem for system F with
a supplementary equality axiom, called Axiom C:

(Axiom C) Mτ = Mτ ′ for Γ `M : ∀X.σ and X /∈ FV (σ)
The modified system was called Fc and the main theorem was formulated as follows:
Theorem 9.3 (Genericity) Let Γ ` M,N : ∀X.σ. If Mτ =Fc Nτ for some type τ , then

M =Fc N . (Notice that the condition X /∈ FV (σ) is not included.)
We wrote in [1] “The Genericity Theorem states ... that, in Fc, if two second-order terms

coincide on an input type, then they are, in fact, the same function...”
More recently Ralph Matthes pointed out (to this author) that certain formulations in [1]

seem not very precise and as a consequence some proofs seem not sufficiently clear as well.
Ralph’s questions mostly concerned the treatment of contexts and related questions such as the
variable convention and the eigenvariable condition. As his PhD thesis [2] defended in 1999
shows (see especially section 2.1), there are many subtle aspects that were not fully realized at
the time when our own paper was written (1992).

This talk will summarize main answers/comments and the results of supplementary explo-
ration of the question of genericity (and term equality) in Fc that may be of interest to “Types”
community.

First of all, Theorem 9.3 in its original formulation remains valid (though some comments
are due). A more rigourous presentation of F and Fc than in [1] will be given (taking into
account the progress in the study of higher order and dependent type systems). In [1] to some
extent we mixed the “Church-style” (types given to free variables within terms) and “Curry-
style” presentation (contexts to define the types of free variables, and typing judgements for
terms). Matthes [2] used essentially the Church-style. In this talk the presentation using typing
judgements is preferred because it helps a) to underline some interesting properties of C-equality
and b) to make comparison with dependent type systems.

Type and term variables belong to (countably infinite) disjoint sets of symbols. We use
X,Y, Z... and x, y, z... for type and term variables respectively, ρ, σ, τ... for types and M,N, ...
for terms. The syntax of types and (raw) terms is standard:

Types σ ::= X |σ → τ | ∀X.σ

Terms M ::= x |λx : σ.M |MN |ΛX.M |Mτ

Two-part contexts ∆; Γ are considered where ∆ is a finite set of type variables, and Γ a finite set
of type assignments of the form x : σ (x being distinct term variables). The syntactic definitions
above permit already to define the sets of free variables FV (σ), FV (M), FV (Γ) (binders are
∀, λ and Λ, and these sets include both type and term variables).

To the ordinary typing judgements ∆; Γ ` M : σ we add the equality judgements of the
form ∆; Γ ` M = N : σ. (All judgements are considered up to α-equality that is seen as a
meta-level relation.) The rules are modified (updated) accordingly. For example:

∆; Γ `M : σ (X ∈ ∆, X /∈ FV (Γ))

∆\{X}; Γ ` ΛX.M : ∀X.σ (∀ − int) ∆; Γ ` ΛX.(MX) : ∀X.σ (X /∈ FV (M))

∆,Γ ` ΛX.(MX) = M : ∀X.σ (Λ− int)

Axiom C and Genericity for System F Soloviev

In Λ− int the derivability of the premise will exclude the possibility of X being present in the
types of free term variables of M .

Axiom C is represented by the following equality rule:

∆; Γ `M : ∀X.σ (X /∈ FV (σ), τ, ρ ∈ Types, FV (τ), FV (ρ) ⊆ ∆)

∆; Γ `Mτ = Mρ : σ
(C).

Notice that axiom C does not change typing and the class of well-typed terms in F .
Naturally, if ∆; Γ `M : σ and we change the context, the type of M may change. However

the βη-equality is invariant w.r.t. the change of context in the following sense (=βη means that
the rule C is not used in the derivation of this equality):

Proposition 1. Let ∆; Γ ` M : σ, ∆; Γ ` N : σ and ∆; Γ ` M =βη N : σ. If (in another
context) ∆1; Γ1 `M : τ and ∆1; Γ1 ` N : τ then ∆1; Γ′

1 `M =βη N : τ .
For C-equality the situation is different. It may depend on context. This point went

unnoticed in [1], probably because of some confusion of “Church” and “Curry”-styles. Let
⊥ = ∀X.X,> = ∀X.(X → X).

Example 1. Let Γ = x : ⊥,Γ1 = x : ∀Y.∀Z.(⊥ → ⊥), M = x>⊥, N = x⊥(⊥ → ⊥). The ∆
part is empty, we have Γ ` M,N : ⊥ → ⊥ and Γ1 ` M,N : ⊥ → ⊥ (the terms even have the
same types). However with Γ the axiom C cannot be applied at all, and with Γ1 it can (twice),
so we have Γ1 `M =Fc

N : ⊥ → ⊥ but Γ `M 6=Fc
N : ⊥ → ⊥.

It turns out that in theorem 9.3 cited above the role of context is crucial. That is, in one
context we may have ∆; Γ ` Mρ =Fc Nρ : [ρ/X]σ for some type ρ, and thus ∆; Γ ` M =Fc

N : ∀X.σ (genericity), but in another just Mρ 6=Fc
Nρ. Appropriate examples may be easily

obained from the example above:
Example 2. Let M ′ = ΛU.x>U,N ′ = ΛU.x⊥(U → U) with ρ = ⊥ and the same contexts

Γ and Γ1 as in example 1.
It means that the claim “if two second-order terms coincide on an input type, then they

are, in fact, the same function...” has to be corrected. The situation is much more interesting:
these terms (seen as functions with parameters taken from context) may represent the same
(constant) function on types for some contexts and different functions for others. This behaviour
has certainly to be explored further.

The talk will present also the list of minor corrections that are necessary in [1] (they concern
mostly the formulation of some lemmas, technically the proofs remain almost unchanged).

References

[1] Longo, G., Milsted, K., and Soloviev, S. (1993) The Genericity Theorem and effective Parametricity
in Polymorphic lambda-calculus. Theoretical Computer Science 121, 323-349.

[2] Matthes, R. Extensions of System F by Iteration and Primitive Recursion on Monotone Inductive
Types. PhD Thesis, Ludwig-Maximilian University, Munich, defended on 2 February 1999.

2

Towards Completeness of Full Simply Typed Lambda

Calculus

Silvia Ghilezan1,2 and Simona Kašterović1

1 Faculty of Technical Sciences, University of Novi Sad
Novi Sad, Serbia

{gsilvia, simona.k}@uns.ac.rs
2 Mathematical Institute SASA

Belgrade, Serbia

The full simply typed lambda calculus is the simply typed lambda calculus extended with
product type and sum type. We briefly recall the grammar which generates terms and types.
Basic notions and definitions can be found in [1, 4, 6, 7]. Term expressions, aka terms, are
generated by the following grammar:

M,N ::=x|λx.M |MN |〈M,N〉|π1(M)|π2(M)

|in1(M)|in2(M)|case M of in1(x)⇒ N | in2(y)⇒ L|〈〉|abort(M)

where x is a term-variable. Types are generated by the following grammar:

σ, τ ::= a | σ → τ | σ × τ | σ + τ | 0 | 1

where a is a type variable. The type assignment system with simple (functional), product and
sum types is denoted by Λ→,×,+.

In this paper, we propose a Kripke-style semantics for full simply typed lambda calculus. For
the lack of space we will just briefly give the idea we use for defining semantics combining the
approcaches in [4] and [5]. In [4] the author did not consider Kripke-style semantics, however
the notions of applicative structure, extensionality and combinators were defined similarly. On
the other hand, in [5] the authors considered Kripke lambda models for simply typed lambda
calculus (without product and sum type). The semantics proposed in [5] and the semantics
we propose are different. In [5] the authors defined the meaning of well-typed terms, i.e.
[[Γ ` M : σ]]. Our aim is to define a semantics that allows to define the meaning of a term
[[M]] not considering its type. The model will satisfy that a term has a certain type if the value
which represents the meaning of the term belongs to the appropriate set.

Definition 1. A Kripke applicative structure for Λ→,×,+ is a tuple
K = 〈W,≤, {Dw}, {Aσw}, {Appw}, {Proj1,w}, {Proj2,w}, {Inlw}, {Inrw}, {iw,w′}〉, which con-
sists of:

(i) a set W of possible worlds partially ordered by ≤,

(ii) a family {Dw} of sets, indexed by worlds w, the set Dw represents a domain of the world
w, {Dw} is a short for {Dw}w∈W and the same applies to other families,

(iii) a family {Aσw} of sets indexed by types σ and worlds w, which satisfies the following:

• for all w ∈ W , for all σ ∈ Type, Aσw ⊆ Dw, A0
w is empty, i.e. A0

w = ∅, and A1
w has

one element, i.e. A1
w = {1w}, 1w ∈ Dw,

• there exists an injection function H : Dw]Dw → Dw, such that for all σ, τ ∈ Type,
H : Aσw]Aτw → Aσ+τw ,

Completeness of Full Simply Typed Lambda Calculus Ghilezan and Kašterović

• there exists an injection function G : Dw → Dw ×Dw such that for all σ, τ ∈ Type,
G : Aσ×τw → Aσw ×Aτw,

(iv) a family {Appw} of application functions Appw : Dw ×Dw → Dw indexed by worlds w,
such that for all σ, τ ∈ Type, Appw � (Aσ→τw ×Aσw) : Aσ→τw ×Aσw → Aτw,

(v) a family {Proj1,w} of first projection functions Proj1,w : Dw → Dw indexed by worlds
w, such that for all σ, τ ∈ Type, Proj1,w � Aσ×τw : Aσ×τw → Aσw,

(vi) a family {Proj2,w} of second projection functions Proj2,w : Dw → Dw indexed by worlds
w, such that for all σ, τ ∈ Type, Proj2,w � Aσ×τw : Aσ×τw → Aτw,

(vii) a family {Inlw} of left injection functions Inlw : Dw → Dw indexed by worlds w, such
that for all σ, τ ∈ Type, Inlw : Aσw → Aσ+τw ,

(viii) a family {Inrw} of right injection functions Inrw : Dw → Dw indexed by worlds w, such
that for all σ, τ ∈ Type, Inrw : Aτw → Aσ+τw ,

(ix) a family {iw,w′} of transition functions iw,w′ : Dw → Dw′ indexed by pairs of worlds
w ≤ w′, such that for all σ ∈ Type, iw,w′ � Aσw : Aσw → Aσw′ and all transition functions
satisfies the following conditions:

iw,w : Dw → Dw is the identity

iw′,w′′ ◦ iw,w′ = iw,w′′ for all w ≤ w′ ≤ w′′

We also require that the application functions, the projection functions and the injection func-
tions commute with the transition in a natural way:

(∀f ∈ Dw) (∀a ∈ Dw) (∀w′ ∈W,w ≤ w′) iw,w′(Appw(f, a)) = Appw′(iw,w′(f), iw,w′(a))

iw,w′(Proj1,w(a)) = Proj1,w′(iw,w′(a))

iw,w′(Proj2,w(a)) = Proj2,w′(iw,w′(a))

iw,w′(Inlw(a)) = Inlw′(iw,w′(a))

iw,w′(Inrw(a)) = Inrw′(iw,w′(a))

We are only interested in applicative structures which are extensional and have combina-
tors (for more details see [4]). The lambda calculus we consider is related to full intuitionistic
propositional logic via the Curry-Howard correspondence ([2]). The existence of the elements,
called combinators, in a model is motivated by this correspondence. More precisely, the axioms
of the Hilbert-style system for intuitionistic propositional logic were the motivation for defin-
ing combinators as elements of models. We have used the translation of lambda terms into
combinatory terms ([3, 4]) in order to prove that the meaning of terms is well-defined.

We have proved that the type assignment system Λ→,×,+ is sound with respect to the
proposed semantics. Our goal is to prove completeness of the type assignment system Λ→,×,+.
The idea is to use the notion of a canonical model for proving completeness.

References

[1] Roberto Di Cosmo and Delia Kesner. A confluent reduction for the extensional typed lambda-
calculus with pairs, sums, recursion and terminal object. In Automata, Languages and Programming,
20nd International Colloquium, ICALP93, Lund, Sweden, July 5-9, 1993, Proceedings, pages 645–
656, 1993.

2

Completeness of Full Simply Typed Lambda Calculus Ghilezan and Kašterović

[2] William A. Howard. The formulae-as-types notion of construction. In To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–490. London : Academic Press,
1980 (originally circulated 1969).

[3] Albert R. Meyer. What is a model of the lambda calculus? Information and Control, 52(1):87–122,
1982.

[4] John C. Mitchell. Foundations for programming languages. Foundation of computing series. MIT
Press, 1996.

[5] John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda calculus. Annals of
Pure and Applied Logic, 51(1-2):99–124, 1991.

[6] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Cǎtǎlin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey. Programming
Language Foundations. Software Foundations series, volume 2. Electronic textbook, May 2018.
Version 5.5.

[7] Gabriel Scherer. Deciding equivalence with sums and the empty type. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 374–386, 2017.

3

Extended Abstract: Principal types are game strategies

Furio Honsell, Marina Lenisa, Marino Miculan, and Ivan Scagnetto

Università di Udine, Italy
{furio.honsell, marina.lenisa, marino.miculan, ivan.scagnetto}@uniud.it

In this paper, the authors pursue the explanation of Geometry of Interaction (GoI) semantics
in terms of principal types. This line of research initiated in [7], where some of the authors put
forward a new understanding of involutions in Abramsky’s model of reversible computation [1].
Namely, the involution interpreting a linear λ-term is just a notation for its principal type and
moreover the GoI-application between interpretations (execution formula) amounts to resolution
between principal types. This enabled us to give a partial answer to the problem, raised by
Abramsky in [1], of characterizing the involutions which are interpretations of combinators.
In [7], we termed the above correspondence the strategies-as-principal types/application-as-
resolution analogy. This analogy was further extended in [8, 9] to the λ!-calculus, which extends
the linear λ-calculus with a modal “!” operator, and subsumes full λ-calculus.

We outline a general programme, implicitly suggested in [2, 1, 3, 12, 13, 7, 9, 8], whereby,
given a suitable type discipline for a (possibly modal) λ-calculus, first one defines an appropriate
set of combinators where such a fragment can be faithfully compiled. Next, the principal types
for these combinators are spelled out in the language of moves in a suitable G.o.I. model, thus
providing an interpretation to the combinators via the resolution-as-G.o.I.-application analogy.
Finally, principal types are extended to the full modal λ-calculus, providing an interpretation to
all λ-terms. From a logical viewpoint, this programme amounts to explaining via a Hilbert-style
logic what otherwise is given in terms of natural deduction or proof-nets. Clearly, such models
are not λ-algebras in general.

For more generality, we extend the model P in [1] from partial involutions to partial sym-
metric relations (PSR) as follows:

Definition 1 (The Model of Partial Symmetric Relations, R).
(i) TΣ, the language of moves, is defined by the signature Σ0= {ε}, Σ1 = {l,r}, Σ2 = {< , >}
(where Σi is the set of constructors of arity i); terms r(x) are output words, while terms l(x)
are input words (often simply denoted by rx and lx);
(ii) R is the set of partial symmetric relations over TΣ;
(iii) the operation of replication is defined by !f = {(< t, u >,< t, v >) | t ∈ TΣ ∧ (u, v) ∈ f};
(iv) the notion of linear application is defined by f · g = frr ∪ (frl; g; (fll; g)∗; flr), where
fij = {(u, v)|(i(u), j(v)) ∈ f}, for i, j ∈ {r, l} (see diagram below), where “;” denotes postfix
composition.

in // • frr //

frl

��

• // out

•
g // •
fll

oo

flr

OO

We make use of a modal extension of linear λ-calculus, and use a rigid form of intersection-
type discipline (see [6]) to control multiple occurrences of bound variables. Namely we put:

Definition 2 (The λ!-calculus and its !− ∧ -type discipline).

• (Λ! 3) M ::= x | MM | λx.M | !M | λ!x.M

• (Type ! 3) τ, σ ::= α | τ (σ | τ → σ | !τ | !uτ | τ ∧ σ, where α denotes a type variable
in TVar, and u, v ∈ TΣ[IV ar] denote index terms over a set IV ar of index variables.

There are two natural inverse morphisms, one from types to relations and one from (coher-
ent) relations to types, namely MT2R : Type ! → R and MR2T : R → Type !. We illustrate
these by way of a few examples concerning the combinators B,W−,W , the pairs in the relations
denote the positions of the occurrences of the same type variable or the same subtype in the
type-tree (see [9] for more details):
B : (α→ β)→ (γ → α)→ γ → β BMNP = M(NP)
W− : (α→ α→ β)→ α→ β W−MN = MNN
W : (!iα(!jβ(γ)((!liα∧!rjβ)(γ WM!N = M !N !N .

MT2R((α→ β)→ (γ → α)→ γ → β) = {r3x↔ lrx, l2x↔ rlrx, rl2x↔ r2lx}
MT2R((α→ α→ β)→ α→ β) = {r2x↔ lr2x, l2x↔ lrlx, lrlx↔ rlx,

lrx↔ l2x}
MT2R((!iα(!jβ(γ)((!liα∧!rjβ)(γ) = {r2x↔ lr2x, l2〈x, y〉 ↔ rl〈lx, y〉,

lrl〈x, y〉 ↔ rl〈rx, y〉}.

We formalize first the relation between type resolution and GoI application of partial sym-
metric relations. Given two types σ1 → σ2 and τ such that S is the unification of σ1 and τ , we
have MT2R(S(σ2)) =MT2R(S(σ1 → σ2)) · MT2R(S(τ)). The reverse needs not hold, in that
GoI application can be non-empty even if the types do not resolve. For this to hold we need to
resolve instead suitable greatest lower bounds w.r.t. a ≤ relation of the two types.

We show also that Hindley-Milner principal types for the standard simply typed λ-calculus
can be viewed as particular partial symmetric relations over TΣ[IV ar]. Namely we prove:

Proposition 1 (Hindley-Milner Principal Types).

• The interpretation of a simply typed closed λ-term M in R is the PSR corresponding to its
Hindley-Milner principal type. Conversely, the type corresponding to the PSR interpreting
a closed typable term M is its principal type. Namely, if `HM M : τ , then [[M]]

R
=

MT2R(τ), and conversely `HM M :MR2T ([[M]]
R

).

• Moreover if M,N,MN are typable with simple types, then MR2T ([[M]]
R ·R [[N]]

R
) is the

principal type of MN , and conversely the relation corresponding to the principal type of
their application is its interpretation.

In the full paper we explore how to apply the programme outlined above to the elementary
affine λ-calculus [18, 20, 11, 4, 10, 5] and the linear light affine λ-calculus, [18, 20].

In conclusion, we briefly relate the corresponding set theories to Fitch-Prawitz Set Theory
and its models, see [19, 16, 18, 14, 20, 5].

In order to check formally computations using partial involutions, we have implemented in
Erlang [15]: application of involutions, compilation of λ-terms as combinators and as involu-
tions, and compilation of involutions as principal types and vice versa. The Web Appendix [21]
includes the Erlang code. The choice of Erlang as a programming language was motivated
by its powerful pattern matching features, its fast execution performances and especially its
scalability in running in parallel the unification tasks generated by the massive set of rewriting
rules.

2

References

[1] S. Abramsky. A Structural Approach to Reversible Computation. Theoretical Computer Science
347(3), 2005.

[2] S. Abramsky, E. Haghverdi, P. Scott. Geometry of Interaction and linear combinatory algebras.
Mathematical Structures in Computer Science 12, 625–665, 2002.

[3] S. Abramsky, M. Lenisa. Linear realizability and full completeness for typed lambda-calculi. Ann.
Pure Appl. Logic 134(2-3), 2005.

[4] P. Baillot, K. Terui. A Feasible Algorithm for Typing in Elementary Affine Logic, Typed Lambda
Calculi and Applications (TLCA 2005), 55–70, 2005.

[5] P. Baillot, E. De Benedetti, S. Ronchi Della Rocca. Characterizing polynomial and exponential
complexity classes in elementary λ-calculus, Inf. and Comp. 261, 55–77, 2018.

[6] H. Barendregt, M. Coppo, M. Dezani-Ciancaglini. A Filter Lambda Model and the Completeness
of Type Assignment, J. Symb. Log. 48(4), 1983.

[7] A. Ciaffaglione, F. Honsell, M. Lenisa, I. Scagnetto. The Involutions-as-principal
types/application-as-unification Analogy, LPAR-22. 22nd International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, 254–270, 2018.

[8] A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, I. Scagnetto. Reversible Computation
and Principal Types in λ!-calculus, The Bulletin of Symbolic Logic 25)(2), 931–940, 2019.

[9] A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, I. Scagnetto, λ!-calculus, Intersection
Types, and Involutions, Formal Structures for Computation and Deduction (FSCD 2019), LIPIcs
131, 2019.

[10] P. Coppola, U. Dal Lago, S.Ronchi Della Rocca. Light Logics and the Call-by-Value Lambda Cal-
culus, Logical Methods in Computer Science 4(4), 2008.

[11] P. Coppola, S. Martini. Optimizing optimal reduction: A type inference algorithm for elementary
affine logic, ACM Trans. Comput. Log. 7(2), 219–260, 2006.

[12] P. Di Gianantonio, F. Honsell, M. Lenisa. A type assignment system for game semantics, Theor.
Comput. Sci. 398 (1-3), 2008.

[13] P. Di Gianantonio, M. Lenisa. Innocent Game Semantics via Intersection Type Assignment Sys-
tems, Computer Science Logic (CSL 2013), LIPIcs 23, 231–247, 2013.

[14] F.Honsell, M. Lenisa, L. Liquori, I. Scagnetto. Implementing Cantor’s Paradise, Programming
Languages and Systems - 14th Asian Symposium (APLAS 2016), 229–250, 2016.

[15] Erlang official website. http://www.erlang.org Last access: 19/01/2018.

[16] F. B. Fitch. Symbolic logic - An Introduction. New York, 1952.

[17] E. Haghverdi. A Categorical Approach to Linear Logic, Geometry of Proofs and full completeness,
PhD Thesis, University of Ottawa, 2000.

[18] J.-Y. Girard. Light Linear Logic, Information and Computation 143(2), 175–204, 1998.

[19] D. Prawitz. Natural Deduction – A proof-theoretical Study. Dover Publications, New York, 2006.

[20] K. Terui. Light Logic and Polinomial Time Computation, PhD thesis, Keio University, 2002.

[21] Web Appendix with Erlang code. http://www.dimi.uniud.it/scagnett/pubs/

automata-erlang.pdf

3

Principal Types as Lambda Nets

Pietro Di Gianantonio and Marina Lenisa

Università di Udine, Italy
{pietro.digianantonio, marina.lenisa}@uniud.it

The objective of this work is to present the connections existing among principal type schemata,
cut-free λ-nets, and normal forms of λ-calculus. As a consequence of these correspondences
there exist correspondences among the normalisation algorithms in the above structures, that
is: unification of principal type schemata, cut-elimination on λ-nets, normalisation on λ-terms.
While the connection between the two latter is well-known, the relationships between unification
of principal type schemata and cut-elimination on λ-nets have rarely been presented explicitly.
The only works we are aware of are [8, 12], but the presentation is quite different from ours.
However, we think that it is worthwhile to analyse in detail such a connection, since it allows
to derive a number of properties on the type system from properties of λ-nets. In general,
the correspondence existing among types, principal types, λ-nets, and normal forms can be
expressed by the following chain of equivalences. For any closed λ-term M :
– M has type τ in the type assignment system, `M : τ , if and only if
– M has principal type schema τ ′ in the principal type assignment system,
M : τ ′, and τ is an
instance of τ ′, if and only if
– the λ-net associated to M reduces, by a cut-elimination strategy C, to a cut-free λ-net t, which
is the translation of τ ′, if and only if
– M reduces according to the strategy S to a normal form N , and t is the λ-net associated to N .

Once the above correspondences have been established, it is possible to derive properties
concerning the type system and the reduction strategy S from properties of λ-nets and the
cut-elimination strategy C, or vice-versa.

In this work, we present in detail an instance of the general pattern outlined above. Namely,
we choose a particular version of type assignment system, we define a corresponding type
assignment system for principal types, and we consider a corresponding notion of λ-net.

We focus on standard λ-calculus, however we present it in terms of its translation into
the linear λ!-calculus, because this turns out to be convenient in discussing the connection to
λ-nets. The type system that we consider includes an intersection operation ∧ on types, which
is commutative and associative, but non-idempotent. However, most of our results hold also in
the case of idempotency. The type system is almost standard, the only non-standard feature
is a bang operator used to mark the type subterms on which the ∧ operator can be applied.
Then we introduce principal types (type schemata) together with a type assignment system
assigning type schemata to λ-terms. Type schemata differ from simple types by the introduction
of type variables and by a box operator, used to mark parts of the type that can be replicated.
From type schemata, by suitable instantiation, one gets (ground) types. Each λ-term turns
out to have at most one principal type schema, while the set of ground types assignable to a
term consists of all the instances of the principal type schema. In the type assignment system
for principal types, the rule for introducing the type schema of an application makes use of a
generalised unification algorithm on types.

We will show that principal types can be seen as an alternative representation of cut-free
λ-nets, and the unification algorithm on principal types can be seen as a reformulation of the

Principal types as lambda nets P. Di Gianantonio, M. Lenisa

cut-elimination algorithm for λ-nets. In order to formalise these correspondences, we present a
translation from principal type schemata to λ-nets. However, we need to consider a variation
of the standard cut-elimination procedure on λ-nets, whereby the cut-rule concerning the
conclusions of a weakening and a promotion does not eliminate the box, but leaves a pending
term. With this variation the cut-elimination procedure becomes perpetual, that is a cut is
eliminated only if the λ-net is strongly normalising. On the other hand, we present, in our
setting, the standard translation of λ-terms into λ-nets [9, 1]. The main result of this work can
be seen as a commutation result, namely: given a λ-term M , we assign to it a principal type τ ,
this in turn induces a cut-free λ-net, which can be alternatively obtained by applying to M the
standard transformation into λ-nets and then the cut-elimination procedure.

As consequences of the correspondences that we have established, we derive the following
results on the type assignment system: the typable terms are exactly the strongly normalising
ones, subject reduction holds up-to a suitable relation on types, the inhabitation problem is
decidable.

The present work builds on [4, 3, 5], where the analogies involutions as principal types and
application as unification have been introduced and explored for a type assignment system
related to Abramsky’s Geometry of Interaction model of partial involutions.

Related work. Duquesne has first described the connection between principal types and
proof-nets, [8]. This approach has been further extended by Regnier in his PhD thesis [12].
Similarly to Duquesne and Regnier approach (referred to as DR approach in the following), we
use indexes to delimit the parts of a type that need to be replicated. However, there exists a
long list of differences. Principal types in DR approach are pairs composed by a variable and a
set of pairs of terms that need to be unified; the most general unifier (MGU) of this set of pairs,
if existing, will transform the variable in a principal type in our sense. As a result, principal
types in DR approach are almost a direct translation of proof-nets, while our principal types
describe the normal forms of the proof-nets associated to λ-terms. In defining the principal type
of an application, we explicitly define a notion of MGU among two types, while the MGU notion
is not present in DR. As far as this aspect, we are in the tradition of Hindley-Milner algorithm
for principal types. In DR approach, any lambda-term has a principal type, and the type system
characterises weakly normalisable terms, while our system just the strongly normalising ones.

Our work is also related to [10, 11]. Although at first sight the two presentations are quite
different, e.g. they use a different syntax, and different auxiliary procedures, our type assignment
system for principal types is quite similar to the one presented in [10]. What we call index
variable, there is called expansion variable, what we call duplication, there is called expansion.
However, the implementation of duplication expansion is described in a completely different
form, using different auxiliary structure. A connection between the principal types in [10] and
proof-nets is then presented in [11], where it has been used to argue that the type inference with
no-idempotent types has the same complexity of normalization. Comparing this work to ours,
we can say that our principal type algorithm and the connection between types and proof-nets
are simpler and more direct. Moreover, compared to [11], we consider a completely different set
of possible applications of the above-mentioned correspondence.

There exists an extensive literature on principal types in general, or more specifically in
combination with intersection types, as in our case, [2, 7, 13, 15]. The objective of these works
is quite different from ours, namely, often principal types are used to define type inference
algorithms for simple programming languages; in other works, the connection between principal
types and β-normal forms of terms is investigated [6, 14]. Moreover, the type syntax and the
type inference algorithm are quite different from ours, and there is no explicit connection to
proof-nets.

2

Principal types as lambda nets P. Di Gianantonio, M. Lenisa

References

[1] B. Accattoli. Proof nets and the linear substitution calculus. In International Colloquium on
Theoretical Aspects of Computing, pages 37–61. Springer, 2018.

[2] A. Bucciarelli, D. Kesner, and D. Ventura. Non-idempotent intersection types for the lambda-
calculus. Logic Journal of the IGPL, 25(4):431–464, 2017.

[3] A. Ciaffaglione, P. Di Gianantonio, F. Honsell, M. Lenisa, and I. Scagnetto. Reversible computation
and principal types in λ!-calculus. The Bulletin of Symbolic Logic, 25(2):931–940, 2019.

[4] A. Ciaffaglione, F. Honsell, M. Lenisa, and I. Scagnetto. The involutions-as-principal
types/application-as-unification analogy. In G. Barthe, G. Sutcliffe, and M. Veanes, editors,
LPAR, volume 57 of EPiC Series in Computing, pages 254–270. EasyChair, 2018.

[5] A. Ciaffaglione, F. Honsell, M. Lenisa, and I. Scagnetto. Lambda!-calculus, intersection types, and
involutions. In H. Geuvers, editor, FSCD 2019, volume 131 of Leibniz International Proceedings in
Informatics (LIPIcs), Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[6] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and λ-calculus semantics.
In To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 536–560.
Academic Press, 1980.

[7] S. Dolan and A. Mycroft. Polymorphism, subtyping, and type inference in mlsub. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017),
pages 60–72, January 2017.

[8] E. Duquesne and J. Van De Wiele. A new intrinsic characterization of the principal type
schemes. Research Report RR-2416, INRIA, 1995. Projet PARA. URL: https://hal.inria.fr/
inria-00074259.

[9] S. Guerrini. Proof nets and the lambda-calculus. In T. Ehrhard, editor, Linear Logic in Computer
Science, pages 316–65. Cambridge University Press, 2004.

[10] A.J. Kfoury and J.B. Wells. Principality and type inference for intersection types using
expansion variables. Theoretical Computer Science, 311(1):1 – 70, 2004. URL: http://

www.sciencedirect.com/science/article/pii/S0304397503005772, doi:https://doi.org/10.

1016/j.tcs.2003.10.032.

[11] Peter Møller Neergaard and Harry G. Mairson. Types, potency, and idempotency: Why nonlinearity
and amnesia make a type system work. In Proceedings of the Ninth ACM SIGPLAN International
Conference on Functional Programming, ICFP ’04, page 138–149, New York, NY, USA, 2004.
Association for Computing Machinery. URL: https://doi.org/10.1145/1016850.1016871, doi:
10.1145/1016850.1016871.

[12] L. Regnier. Lambda-Calcul et Rèseaux. PhD thesis, Université Paris VII, 1992.

[13] S. Ronchi Della Rocca. Principal type scheme and unification for intersection type discipline. Theor.
Comput. Sci., 59:181–209, 1988.

[14] Emilie Sayag and Michel Mauny. Characterization of the principal type of normal forms in
an intersection type system. In V. Chandru and V. Vinay, editors, Foundations of Software
Technology and Theoretical Computer Science, pages 335–346, Berlin, Heidelberg, 1996. Springer
Berlin Heidelberg.

[15] J. B. Wells. The essence of principal typings. In Proceedings of the 29th International Colloquium
on Automata, Languages and Programming, ICALP ’02, page 913–925, Berlin, Heidelberg, 2002.
Springer-Verlag.

3

13 Finitary representation of ideal and infinite
objects

173

Coinductive Types from Hangers-and-Pegs Streams

Venanzio Capretta1

University of Nottingham, UK
venanzio@duplavis.com

Our purpose is to present a new way to generate elements of coinductive types (sets of tree-
like objects with infinitely descending structure) by general stream processes. Our final goal is to
set up a flexible methodology to define such processes, offering a more flexible way to generate
coinductive objects than the traditional syntactic productivity checks. There are parallels
with advanced methods to ensure computational complexity in algorithmics, specifically the
technique of amortized analysis.

Our main result is that every coinductive type can be realized as a type of streams with
effects. A previous article [7] introduced the notion of monadic stream: an infinite sequence of
elements, each one triggering a monadic action. This action could spawn several parallel streams
(for example, if we use the list monad), so we can use it to represent branching processes and
non-well-founded trees: All forms of structured unfolding can be described by a monad, so
every coinductive type can be represented by monadic streams.

Inductive and coinductive types can be realized as fixed point of container functors [1, 2]:

Def. 1. A container is a pair 〈S, P 〉 consisting of a set of shapes S : Set and a family of
positions P : S → Set. It specifies a functor (S � P) : Set→ Set:

(S � P)X = Σs : S.P s→ X.

The initial algebra µ(S � P) and final coalgebra ν(S � P) model general inductive and
coinductive types. Intuitively their elements are obtained by (non-)well-founded iteration of
the functor: trees with shapes as nodes and positions as branching points.

Our work dovetails with research on the construction of a coinductive type via completions
of free algebras [6, 4, 3] (for a thorough introduction see the forthcoming book [5]). We can
approximate elements of the coinductive type with dependent lists of slices, each slice adding
a layer of shapes at a certain level [12, 13]. This results in a new container 〈S\, P \〉, defined
by simultaneous induction-recursion [10, 11], which Ghani et al. used to study continuous
functions on coinductive types. We used it to obtain a representation theorem for contractions
[8]. In both cases, the generation of an element of the coinductive type requires to add a new
slice at every stage, that is, we must produce all shapes at a certain level at once.

A more flexible paradigm should permit growing different branches at different rates, allow-
ing more general recursive definitions (and avoiding induction-recursion).

Def. 2. For a container 〈S, P 〉, the container 〈S4, P4〉 of hangers and pegs is defined by:

data S4 : Set P4 : S4 → Set
•M : S4 P4 •M = 1

(
M
;) : (s : S)(P s→ S4)→ S4 P4 (s

M
;φ) = Σp : P s.P4 (φ p)

The difference between 〈S\, P \〉 and 〈S4, P4〉 is that S\ is constructed top-down, with
each slice adding one layer of depth, while S4 is constructed bottom-up, with each constructor
adding a shape above sub-hangers. The final coalgebra of (S\ �P \) is isomorphic to the initial
algebra, while the final coalgebra of (S4�P4) contains a subset isomorphic to ν(S�P) (those
elements that never use the base constructor •M).

Hangers-and-Pegs Streams V. Capretta

Thm. 1. The functor (S4�P4) is (naturally isomorphic to) the free monad on (S�P), with
the following return and bind operations:

return : A→ (S4 � P4)A (�=) : (S4 � P4)A→ (A→ (S4 � P4)B)→ (S4 � P4)B
return a = 〈•M, λ • .a〉 〈h,−→a 〉 �= g by induction on h

The definition of the bind operator is by induction on the hanger h:

• If h = •M, then we define (〈h,−→a 〉 �= g) = g (−→a •);

• If h = s
M
;φ with s : S and φ : P s→ S4, we have that P4 h = Σp : P s.P4 (φ p). So, for

every position p : P s and every peg q : P4 (φ q) we have an entry −→a 〈p,q〉 : A. Using the
notation −→a p for the function λq.−→a 〈p,q〉, we can assume by induction hypothesis on (φ p)

that 〈(φ p),−→a p〉 �= g is defined, with components 〈kp,
−→
bp〉. We can now define:

(〈h,−→a 〉 �= g) = 〈(sM;λp.kp), (λ〈p, q〉.(−→bp)q)〉.

We embed coinductive types into types of monadic streams [7]. To every monad we can
associate types of streams that trigger actions in it.

Def. 3. For a monad M and any type A, the type SM,A of M -streams of A is defined by:

codata SM,A : Set
mconsM : M(A× SM,A)→ SM,A

If we take M to be the hangers-and-pegs monad, we obtain streams of actions that gen-
erate as an effect an approximation to an element of ν(S � P) (with extra A-labels). These
approximations need not converge: A stream could reiterate the empty action •M indefinitely.

The actual entries of the stream (the elements of type A) can be seen as labels on the pegs.
We may use them to control the productivity of the stream in a way similar to how amortized
analysis is used to control the complexity of algorithms [9, Ch.17].

Def. 4. For m : N, h : S4, and f1 : P4 h → N, we define the relation m � f1 by cases on h:
if h = •M then (m � f1) = (m > (f1 •)); otherwise m � f1 is true.

We coinductively define a productivity relation between natural numbers and monadic streams:

codata Productive : N→ S(S4�P4),N → Prop
productive : (m : N)(h : S4)(f : P4 h→ N× S(S4�P4),N)

m � f1 ∧ ∀q : P4 h.Productive (f1 q) (f2 q)
→ Productivem (mcons 〈h, f〉).

Thm. 2. If a stream σ : S(S4�P4),N satisfies (Productivemσ) for some number m : N, then

there is a unique
∞
σ : ν(S � P) such that the product of the monadic actions of every prefix of σ

is an approximation of
∞
σ .

The intuitive explanation of this result is that we assign to every peg in the monadic action
a numeric value. The next action will generate new pegs: if the action is the empty hanger
•M, then the value must decrease. There cannot be infinite descending sequences of values, so
there cannot be infinite sequences of •M actions. For actions that generate at least one shape,
we allow the values to increase arbitrarily. This ensures productivity.

The relation � only ensures productivity, but gives no guarantee on the rate of production.
If we use more refined relations, we can impose a stricter control on productivity. For example
if we require that the new pegs increase the value by adding their depth to it, we will obtain
linearly productive streams.

2

Hangers-and-Pegs Streams V. Capretta

References

[1] Michael Gordon Abbott. Categories of containers. PhD thesis, University of Leicester, England,
UK, 2003.

[2] Michael Abott, Thorsten Altenkirch, and Neil Ghani. Containers - constructing strictly positive
types. Theoretical Computer Science, 342:3–27, September 2005. Applied Semantics: Selected
Topics.

[3] Samson Abramsky. A cook’s tour of the finitary non-well-founded sets. In Sergei N. Artëmov,
Howard Barringer, Artur S. d’Avila Garcez, Lúıs C. Lamb, and John Woods, editors, We Will
Show Them! Essays in Honour of Dov Gabbay, Volume One, pages 1–18. College Publications,
2005.

[4] Jiŕı Adámek. On final coalgebras of continuous functors. Theor. Comput. Sci., 294(1/2):3–29,
2003.

[5] Jǐŕı Adámek, Stefan Milius, and Lawrence S. Moss. Initial algebras, terminal coalgebras, and the
theory of fixed points of functors. Draft book, available from http://www.stefan-milius.eu,
2020.

[6] Michael Barr. Algebraically compact functors. Journal of Pure and Applied Algebra, 82:211–231,
October 1992.

[7] Venanzio Capretta and Jonathan Fowler. The continuity of monadic stream functions. In 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland,
June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.

[8] Venanzio Capretta, Graham Hutton, and Mauro Jaskelioff. Contractive functions on infinite data
structures. In Tom Schrijvers, editor, Proceedings of the 28th Symposium on the Implementation
and Application of Functional Programming Languages, IFL 2016, Leuven, Belgium, August 31 -
September 2, 2016, pages 5:1–5:13. ACM, 2016.

[9] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 2009.

[10] Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory.
Journal of Symbolic Logic, 65(2), June 2000.

[11] Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive definitions. In
Proceedings of TLCA 1999, volume 1581 of LNCS, pages 129–146. Springer-Verlag, 1999.

[12] Neil Ghani, Peter Hancock, and Dirk Pattinson. Continuous functions on final coalgebras. Electr.
Notes Theor. Comput. Sci., 164(1):141–155, 2006. Proceedings of the Eighth Workshop on Coal-
gebraic Methods in Computer Science (CMCS 2006).

[13] Neil Ghani, Peter Hancock, and Dirk Pattinson. Continuous functions on final coalgebras. Electr.
Notes Theor. Comput. Sci., 249:3–18, 2009. Proceedings of the 25th Conference on Mathematical
Foundations of Programming Semantics (MFPS 2009).

3

Non-deterministic Functions as Non-deterministic Processes∗

Joseph Paulus1, Daniele Nantes-Sobrinho2, and Jorge A. Pérez1

1 University of Groningen, The Netherlands 2University of Brasilia, Brazil

We are interested in rigorously connecting sequential and concurrent programming models
via translations of the λ-calculus into the π-calculus. Specifically, we aim at clarifying how
properties such as non-determinism, confluence, and failure can be accurately carried over
from the sequential realm to the concurrent one, exploiting types. To this end, we consider:

• The resource calculus (denoted λR), a confluent, non-deterministic functional calculus
that incorporates failure (“deadlock”) [1].

• The session π-calculus (denoted sπ), which supports non-determinism and failure, and fol-
lows from the Curry-Howard correspondence connecting linear logic and session types [5].

Our main contribution is a translation from terms in λR into processes in sπ, denoted [[−]]u. In
the following, we briefly describe the main ingredients and outcomes of our ongoing study.

Context There is a rich history on encodings of the λ-calculus into the π-calculus, triggered
by Milner’s seminal work [9]. The calculus λR, first described by Boudol [1], is more expressive
than the λ-calculus: it is non-deterministic and allows for confluent reductions. While in the
usual λ-calculus an application M N considers the term N as a resource infinitely available for
substitution, in λR the term N is considered as a possibly limited resource, extracted from a
bag of terms. The size of the bag then provides an upper bound to the number of possible
substitutions: in [3], a substitution where a resource fails to be provided is considered as a
deadlock. Also, the semantics in [3] enforces lazy evaluation and collapsing non-determinism
(i.e., M+N reduces to either M or N). The semantics in [10, 6] is non-lazy with non-collapsing
non-determinism; deadlocks can arise from lack or excess of (linear) resources in the bag.

This Work: Source and Target Calculi For uniformity, we consider sequential and con-
current calculi with confluence and non-collapsing non-determinism. The syntax of λR is:

(Terms) M,N,L ::= x | λx.M | (M P) | M〈〈P/x〉〉
(Bags) P,Q,R ::= 1 | HMI | P ·Q
(Expressions) M,N,L ::= M | M + N

Terms are unary expressions: they can be variables, abstractions, and applications. Given a
bag P and a variable x, 〈〈P/x〉〉 denotes an explicit substitution. We write P ·Q to denote the
concatenation of bags P and Q; this is a commutative and associative operation, where 1 is the
identity element. Sums are associative and commutative; terms in a sum are silently reordered.

In our semantics for λR, reductions are lazy (as in [1, 3]) as the explicit substitution of the
bag is left delayed and not evaluated; also, non-determinism is non-collapsing (as in [10, 6]). A
failure would occur when there is an explicit substitution that can not be performed, i.e., when
there are not enough elements for substitution or when there are too many elements in the bag.

In our semantics, the λR term M0 = (λx.xHxI)HMI · HNI reduces as follows:

(λx.xHxI)HMI · HNI −→ xHxI〈〈HMI · HNI/x〉〉 −→MHxI〈〈HNI/x〉〉+NHxI〈〈HMI/x〉〉
∗Paulus and Pérez are partially supported by the Netherlands Organization for Scientific Research (NWO)

under the VIDI Project No. 016.Vidi.189.046 (Unifying Correctness for Communicating Software).

Non-deterministic Functions as Non-deterministic Processes Paulus, Nantes-Sobrinho and Pérez

First, the redex becomes an explicit substitution of the bag HMI · HNI; then, all elements in
the bag are non-deterministically and linearly substituted into the head variable.

The concurrent calculus sπ, introduced in [5], is a session π-calculus with (internal) non-
determinism and failure, which rests upon a Curry-Howard isomorphism connecting an extended
linear logic and session types for disciplining message-passing concurrency. Its syntax is:

P,Q ::=
0 | x(y).P | x(y).P | (P | Q) | (νx)P | [x↔ y] | x.close | x.close;P |
P ⊕Q | x.somew;P | x.some;P | x.none

Constructs in the first line have standard readings: the inactive process, output and input pre-
fixes, parallel composition, restriction, name forwarding, and closing of a session, respectively.
Constructs in the second line represent internal non-determinism and potentially abortable ses-
sion behaviors. P ⊕ Q specifies a non-deterministic choice of behaving as P or Q. This is
non-collapsing determinism: a contextual rule allows P ⊕ Q −→ P ′ ⊕ Q if P −→ P ′. Pro-
cess x.somew;P , where w = w1, . . . , wn is a sequence of channels dependent on x, requires the
confirmation of a session behaviour along channel x in order to perform P . Process x.some;P
(resp. x.none) specify the availability (resp. failure) of producing a session along x:

x.some;P | x.somew;Q −→ P | Q x.none | x.somew;Q −→ w1.none | . . . | wn.none

Our Encoding As usual in translations of λ-calculi in the π-calculus, our encoding [[−]]u is
parameterised over a channel u along which the behaviour of the encoded term is provided.
The term M0 = (λx.xHxI)HMI · HNI, discussed above, is encoded into sπ as follows:

(νv)
(
R | v.somew; v〈x〉.(x.somew;x〈x1〉.(x1.somew; [[M]]x1

| x〈x2〉.(x2.somew; [[N]]x2
| x.close)) | [v ↔ u])

)

⊕
(νv)

(
R | v.somew; v〈x〉.(x.somew;x〈x1〉.(x1.somew; [[N]]x1

| x〈x2〉.(x2.somew; [[M]]x2
| x.close)) | [v ↔ u])

)

where R is defined as:

R = v.some; v(x).x.some;x(x1).x(x2).x.close; (νt)(x1.some; [x1 ↔ t] |
t.somew; t〈y〉.(y.somew; y〈y1〉.(y1.somew;x2.some; [x2 ↔ y1] | y.close) | [t↔ v]))

Names always first either confirm their behaviour or wait for their behaviour to be confirmed.
When a inputs a variable it must confirm its behaviour; when a channel outputs a fresh channel
it must first confirm that a name can be received. This is induced by the type discipline in [5].

To simplify the encoding of substitutions in λR as processes in sπ, we have introduced an
intermediate calculus: the resource calculus with sharing, denoted λRS , which borrows elements
from the atomic λ-calculus [8] and the resource control calculus [7]. In particular, in λRS variables
can occur at most once; multiple occurrences can be specified with the sharing operator [x̃← x].

We have developed type systems for λR and λRS based on intersection types. This is a natural
choice, as known type systems for the resource control calculus [7] and the resource calculi in
[2, 10] rely on intersection types. We adapt the type system in [4] to better match the behavior
of the typed sπ processes. The main difference with respect to [2, 10] is that all terms in a bag
must be of the same type. Also, our type system rules out terms that will produce failures.

Our encoding of λR into sπ (mediated by λRS) preserves types (i.e., well-typed terms are
encoded into well-typed processes) and is operational correspondent. We have also developed
another encoding, which concerns well-formed λR terms as source calculus. The class of well-
formed processes contains well-typed processes but includes also terms that may fail. By trans-
forming potentially untyped λR terms into well-typed sπ processes, our second encoding gives
a justification of the concept of failure as typed concurrent processes.

2

Non-deterministic Functions as Non-deterministic Processes Paulus, Nantes-Sobrinho and Pérez

References

[1] G. Boudol. The lambda-calculus with multiplicities (abstract). In CONCUR ’93, 4th Interna-
tional Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Proceed-
ings, pages 1–6, 1993.

[2] G. Boudol, P. Curien, and C. Lavatelli. A semantics for lambda calculi with resources. Mathe-
matical Structures in Computer Science, 9(4):437–482, 1999.

[3] G. Boudol and C. Laneve. Lambda-calculus, multiplicities, and the pi-calculus. In Proof, Language,
and Interaction, Essays in Honour of Robin Milner, pages 659–690, 2000.

[4] A. Bucciarelli, T. Ehrhard, and G. Manzonetto. Categorical models for simply typed resource
calculi. Electr. Notes Theor. Comput. Sci., 265:213–230, 2010.

[5] L. Caires and J. A. Pérez. Linearity, control effects, and behavioral types. In Programming
Languages and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, pages 229–259, 2017.

[6] M. Dominici, S. Ronchi Della Rocca, and P. Tranquilli. Standardization in resource lambda-
calculus. In Proceedings 2nd International Workshop on Linearity, LINEARITY 2012, Tallinn,
Estonia, 1 April 2012., pages 1–11, 2012.

[7] S. Ghilezan, J. Ivetic, P. Lescanne, and S. Likavec. Intersection types for the resource control
lambda calculi. In Theoretical Aspects of Computing - ICTAC 2011 - 8th International Colloquium,
Johannesburg, South Africa, August 31 - September 2, 2011. Proceedings, pages 116–134, 2011.

[8] T. Gundersen, W. Heijltjes, and M. Parigot. Atomic lambda calculus: A typed lambda-calculus
with explicit sharing. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 311–320, 2013.

[9] R. Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119–141,
1992.

[10] M. Pagani and S. Ronchi Della Rocca. Solvability in resource lambda-calculus. In Foundations of
Software Science and Computational Structures, 13th International Conference, FOSSACS 2010,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010,
Paphos, Cyprus, March 20-28, 2010. Proceedings, pages 358–373, 2010.

3

A Type-Theoretic Potpourri: Towards Final Coalgebras
of Accessible Functors

Henning Basold1 and Niccolò Veltri2

1 LIACS – Leiden University
h.basold@liacs.leidenuniv.nl

2 Tallinn University of Technology
niccolo@cs.ioc.ee

The semantics of finitely-branching transition systems, process calculi [8] and various kinds
of probabilistic processes [6] can be modelled as final coalgebras of accessible functors [10]. This
result is folklore in classical set theory and has been used to extend the data types of Isabelle [4],
but it was so far not exploitable in constructive type theory. In this talk, we will present a type
theory that combines several ideas from recent years to obtain a constructive theory of final
coalgebras for accessible functors.

The main ideas that go into this theory are

• set-truncated higher inductive types [1, 3, 9], also called quotient inductive types, to model
accessible functors as types with free types variables,

• coinductive types as fixed points of types with a free type variable,

• an equality type that is explicitly axiomatised with reflexivity, function extensionality and
a coinduction proof principle,

• a combination of cubical type theory (CTT) and the coercion from observational type
theory (OTT), similar to what was suggested by Chapman et al. [5] and further developed
by Sterling et al. [7], to handle the extensional equality type and preserve canonicity.

As for the last point, the combination of CTT and OTT, we chose a different route, however,
than the mentioned authors. The equality type in our theory is neither defined by induction on
types nor do we introduce matching on types. Instead, we push all the work to the reduction
relation, which only enables reductions if a coercion is of the right shape. We also do not
allow abstraction over interval variables, as is customary in CTT, but explicitly add function
extensionality as a term constructor for equality proofs. Interestingly, this necessitates β-
reduction rules for extensionality and coinduction proofs. Finally, we avoid for the time being
the introduction of universes, large elimination and thereby univalence into our theory. To still
be able to formulate dependent elimination of inductive types and the coinduction principle,
we lift types with free type variables to predicates and relations by using inductive families, see
the first authors thesis [2, Sec. 7.4].

A Glance at the Theory Let us briefly present here the main parts of our type theory. The
cubical influence on the theory is use of interval expressions to describe endpoints of equality
proofs and coercions. To this end, every judgement is equipped with an interval context ∆ and
we can form interval expressions from variables in ∆, 0, 1 and affine combinations:

∆ ` p, q, r : I
∆ ` p(q − r) : I (p(q − r))(q′ − r′) −→ p((q(q′ − r′))− (r(q′ − r′)))

Type-Theoretic Potpourri Basold and Veltri

We display here the reduction rule for interactions of affine combinations on the right, while
the other reduction rules for affine combinations are the obvious ones.

Next, the theory features type equalities, coercions along those equalities and the corre-
sponding reduction rules. We indicate types in reductions whenever they are necessary.

∆ | Γ ` A,B Ty

∆ | Γ ` A ∼ B TyEq

∆ | Γ ` Q : A ∼ B ∆ ` p : I
∆ | Γ ` Q p Ty

∆, i : I | Γ `M Ty M [0/i] ≡ A M [1/i] ≡ B
∆ | Γ ` 〈i〉.M : A ∼ B

∆ | Γ ` Q : A ∼ B ∆ ` p, q : I ∆ | Γ ` t : Q p

∆ | Γ ` t[p |Q | q〉 : Q q

∆ | Γ ` Q : A ∼ B
∆ | Γ ` Q 0 −→ A Ty

∆ | Γ ` Q : A ∼ B
∆ | Γ ` Q 1 −→ B Ty (〈i〉.M) p −→M [p/i] Q −→ 〈i〉.Q i

t[0 |Q | 0〉 −→ t t[1 |Q | 1〉 −→ t t[1 |Q | 0〉 −→ t[0 | 〈i〉.Q i(1− 0) | 1〉

The last case for the reduction of coercions, namely t[0 |Q | 1〉, is defined by case distinction
on the type of t, similarly to theory of Chapman et al. [5].

For brevity, we leave out the rules for higher inductive types, which essentially combine
set-truncated HIT [3] with a universe-free syntax for families and liftings [2]. Coinductive types
are simply fixed point types νX.A of types with one free variable. The rules of the type theory
ensure that the variable X only appears in strictly positive position.

The final ingredient is the axiomatisation of the (heterogeneous) equality type on terms. We
only expose here reflexivity and function extensionality here to simplify the presentation. Apart
from the standard cubical computation rules for term equalities, we also admit β-reductions for
the reflexivity and function extensionality. These are necessary to obtain canonical forms. The
coinduction principle is introduced in the same way, but requires lifting of types to relations,
which is definable by induction on the types to be lifted, cf. [2, Sec. 7.4].

∆ | Γ ` s : A ∆ | Γ ` t : B

∆ | Γ ` s ∼ t Ty

∆ | Γ ` s, t : A ∆ | Γ ` Q : s ∼ t ∆ ` p : I
∆ | Γ ` Q p : A

∆ | Γ ` s : A

∆ | Γ ` refl s : s ∼ s
∆ | Γ ` f, g : Π(x : A).B ∆ | Γ, x : A ` e : f x ∼ g x

∆ | Γ ` funext f g (x. e) : f ∼ g

∆ | Γ ` s, t : A ∆ | Γ ` Q : s ∼ t
∆ | Γ ` Q 0 −→ s : A

∆ | Γ ` s, t : A ∆ | Γ ` Q : s ∼ t
∆ | Γ ` Q 1 −→ t : A

∆ | Γ ` s : A ∆ ` p : I
refl s p −→ s : A

∆ | Γ ` f, g : Π(x : A).B ∆ | Γ, x : A ` e : f x ∼ g x ∆ ` p : I ∆ | Γ ` t : A

∆ | Γ ` funext f g (x. e) p t −→ e[t/x] p : B[t]

2

Type-Theoretic Potpourri Basold and Veltri

References
[1] T. Altenkirch and A. Kaposi. Type theory in type theory using quotient inductive types. In

R. Bodík and R. Majumdar, editors, Proc. of POPL 2016, pages 18–29. ACM, 2016.
[2] H. Basold. Mixed Inductive-Coinductive Reasoning: Types, Programs and Logic. PhD Thesis,

Radboud University, 2018.
[3] H. Basold, H. Geuvers, and N. van der Weide. Higher Inductive Types in Programming. J.UCS,

David Turner’s Festschrift – Functional Programming: Past, Present, and Future, 2017.
[4] J. C. Blanchette, J. Hölzl, A. Lochbihler, L. Panny, A. Popescu, and D. Traytel. Truly Modular

(Co)datatypes for Isabelle/HOL. In G. Klein and R. Gamboa, editors, Proceedings of ITP 2014,
volume 8558 of LNCS, pages 93–110. Springer, 2014.

[5] J. Chapman, F. N. Forsberg, and C. McBride. The Box of Delights (Cubical Observational Type
Theory). Unpublished Note, Jan. 2018.

[6] A. Sokolova. Probabilistic systems coalgebraically: A survey. TCS, 412(38):5095–5110, 2011.
[7] J. Sterling, C. Angiuli, and D. Gratzer. Cubical Syntax for Reflection-Free Extensional Equality.

In H. Geuvers, editor, 4th International Conference on Formal Structures for Computation and
Deduction (FSCD 2019), volume 131 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 31:1–31:25, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[8] D. Turi and G. D. Plotkin. Towards a Mathematical Operational Semantics. In LICS’97, pages
280–291. IEEE, 1997.

[9] T. Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathe-
matics. Institute for Advanced Study, 2013.

[10] J. Worrell. Terminal sequences for accessible endofunctors. In Coalgebraic Methods in Computer
Science, CMCS 1999, Amsterdam, The Netherlands, March 20-21, 1999, pages 24–38, 1999.

3

Resolving finite indeterminacy
A definitive constructive universal prime ideal theorem

Peter Schuster and Daniel Wessel

Università degli Studi di Verona, Dipartimento di Informatica
Strada le Grazie 15, 37134 Verona, Italy

{peter.schuster,daniel.wessel}@univr.it

Ideal objects and the transfinite methods that grant their existence abound in abstract al-
gebra. From a logical point of view, ideal objects serve for proving the semantic conservation
of additional non-deterministic sequents, that is, with finite but not necessarily singleton succe-
dents. By design, dynamical proofs [14,20,39] allow to eliminate the use of ideal methods upon
shifting focus from semantic model extension principles to their corresponding syntactic conser-
vation theorems. This move in line with Hilbert’s programme has shaped modern constructive
algebra and has seen tremendous success, not least because coherent (or first-order geometric)
logic predominates in that area [10, 14, 22, 25]: the use of a non-deterministic axiom can be
captured by a finite branching of the proof tree. Coherent theories, on the other hand, lend
themselves to automated theorem proving [3, 4, 15,35].

A paradigmatic case, which to a certain extent has been neglected in dynamical algebra
proper, is Krull’s Lemma for prime ideals, presumably the most prominent consequence of the
axiom of choice in ring theory. A particular form of this asserts that a multiplicative subset
of a commutative ring contains the zero element if and only if the set at hand meets every
prime ideal. Prompted by certain aspects in the novel treatment of valuative dimension [18],
Krull’s Lemma has seen a constructive treatment only recently [33]. The latter, however, has
brought us to unearth the underlying general phenomenon in the present paper: Whenever an
algebraic or proof certificate is obtained by the semantic conservation of certain additional non-
deterministic axioms, there is a finite labelled tree belonging to a suitable inductively generated
class which tree encodes the desired computation.

Our characterisation works in the fairly universal setting of consequence relations, which
serve here to capture basic structures, e.g., ideals of commutative rings, propositional theories,
or partial orders, on top of which we consider certain non-deterministic axioms that describe
“ideal” specifications of the former: prime ideals, complete theories, or linear order extensions.

Recall that a consequence relation on a set S is a relation � between finite subsets1 and
elements of S, which is reflexive, monotone and transitive in the following sense:

U 3 a
U � a

(R)
U � a
U, V � a

(M)
U � b U, b� a

U � a
(T)

where the usual shorthand notations are in place.2 The ideals of a consequence relation are
the subsets a of S such that if a ⊇ U and U � a, then a ∈ a. If U is a finite subset of S, then
〈U〉 = { a ∈ S | U � a } is an ideal.

A decisive aspect of our approach is the notion of a regular set for certain non-deterministic
axioms over a fixed consequence relation, where by a non-deterministic axiom3 on S we under-

1We understand a set to be finite if it can be written as { a1, . . . , an } for some n > 0.
2The converse relation � corresponds to a finitary formal topology [6, 23,29].
3Our terminology borrows from van den Berg’s principle of non-deterministic inductive definitions [36],

variants of which have recently come to play a role in constructive reverse mathematics [16,17].

Resolving finite indeterminacy Schuster and Wessel

stand a pair (A,B) of finite subsets of S. A subset p of S is closed for (A,B) if A ⊆ p implies
p G B, where the latter is to say that p and B have an element in common.4

Let E be a set of non-deterministic axioms over �. A prime ideal is an ideal of � that is
closed for every element of E . For instance, if � denotes deduction, and E consists of all pairs
(∅, {ϕ,¬ϕ }) for sentences ϕ, then the (prime) ideals are exactly the (complete) theories.

A subset R of S is regular with respect to E if, for all finite subsets U of S and all (A,B) ∈ E ,
(∀b ∈ B) 〈U, b〉 G R
〈U,A〉 G R

Abstracted from the multiplicative subsets occurring in Krull’s Lemma, regular sets turn out
to be the fundamental ingredient of our Universal Prime Ideal Theorem:

Proposition 1 (ZFC). A subset R of S is regular if and only if, for every ideal a, we have
R G a precisely when R G p for all prime ideals p ⊇ a .

Regular sets further account for the constructive version of Proposition 1. To this end, given
an ideal a, we next define a collection Ta of finite labelled trees such that the root of every
t ∈ Ta be labelled with a finite subset U of a, and the non-root nodes be labelled with elements
of S. The latter will be determined successively by consequences of U along the elements of E .

We understand paths, which necessarily are finite, to lead from the root of a tree to one of
its leaves. Given a path π of t ∈ Ta, we write π � a whenever U, b1, . . . , bn � a where U labels
the root of t and b1, . . . , bn are the labels occurring at the non-root nodes of π. In any such
context, let also 〈π〉 = {a ∈ S : π � a}.
Definition. Let a be an ideal. We generate Ta inductively according to the following rules:

1. For every finite U ⊆ a, the trivial tree labelled with U belongs to Ta.

2. If (A,B) ∈ E and if t ∈ Ta has a path π such that π � a for every a ∈ A, then add, for
every b ∈ B, a child labelled with b at the leaf of π.

We say that t ∈ Ta terminates in R ⊆ S if, for every path π of t, there is r ∈ R such that π� r.

Here is our Constructive Universal Prime Ideal Theorem, which already works in a suitable
fragment of Aczel’s Constructive Zermelo–Fraenkel set theory CZF [1, 2].

Proposition 2 (CZF). A subset R of S is regular if and only if, for every ideal a, we have
R G a precisely when there is a tree t ∈ Ta which terminates in R.

In this manner we manage to uniformise many of the known instances of the dynamical
method [14, 20, 39]. We further generalise the universal proof-theoretic conservation criterion
that has been offered before [27], using Scott–style entailment relations [34],5 to unify the several
phenomena present in the literature, e.g. [5, 12,19,21,24].

Last but not least, we thus link the syntactical with the semantic approach:

Proposition 3 (CZF). Let a be an ideal, and t ∈ Ta a tree. For every prime ideal p ⊇ a there
is a path π through t such that p ⊇ 〈π〉, that is, p contains all the labels occurring along π.

In other words, every ideal object can be approximated from inside by one of the corresponding
tree’s branches. We thus abstract from the case of commutative rings we have considered
before [33].

4We borrow this symbol from formal topology [30,31].
5The relevance of multi-conclusion entailment to constructive algebra and point-free topology has been

pointed out in [5], and has been used very widely, e.g. in [7–9,12,13,24,26,28,32,37,38]. Lorenzen’s precedence
is currently under scrutiny [11].

2

Resolving finite indeterminacy Schuster and Wessel

References

[1] Peter Aczel and Michael Rathjen. Notes on constructive set theory. Technical report, Institut
Mittag–Leffler, 2000. Report No. 40.

[2] Peter Aczel and Michael Rathjen. Constructive set theory. Book draft, 2010. URL: https:
//www1.maths.leeds.ac.uk/~rathjen/book.pdf.

[3] Marc Bezem and Thierry Coquand. Automating coherent logic. In International Conference on
Logic for Programming Artificial Intelligence and Reasoning, pages 246–260. Springer, 2005.

[4] Marc Bezem and Dimitri Hendriks. On the mechanization of the proof of Hessenberg’s theorem
in coherent logic. J. Automat. Reason., 40(1):61–85, 2008.

[5] Jan Cederquist and Thierry Coquand. Entailment relations and distributive lattices. In Samuel R.
Buss, Petr Hájek, and Pavel Pudlák, editors, Logic Colloquium ’98. Proceedings of the Annual
European Summer Meeting of the Association for Symbolic Logic, Prague, Czech Republic, August
9–15, 1998, volume 13 of Lect. Notes Logic, pages 127–139. A. K. Peters, Natick, MA, 2000.

[6] Francesco Ciraulo and Giovanni Sambin. Finitary formal topologies and Stone’s representation
theorem. Theoret. Comput. Sci., 405(1–2):11–23, 2008.

[7] Thierry Coquand. About Stone’s notion of spectrum. J. Pure Appl. Algebra, 197(1–3):141–158,
2005.

[8] Thierry Coquand. Space of valuations. Ann. Pure Appl. Logic, 157:97–109, 2009.
[9] Thierry Coquand and Henri Lombardi. Hidden constructions in abstract algebra: Krull dimension

of distributive lattices and commutative rings. In M. Fontana, S.-E. Kabbaj, and S. Wiegand,
editors, Commutative Ring Theory and Applications, volume 231 of Lect. Notes Pure Appl. Math-
ematics, pages 477–499, Reading, MA, 2002. Addison-Wesley.

[10] Thierry Coquand and Henri Lombardi. A logical approach to abstract algebra. Math. Structures
Comput. Sci., 16:885–900, 2006.

[11] Thierry Coquand, Henri Lombardi, and Stefan Neuwirth. Lattice-ordered groups generated by an
ordered group and regular systems of ideals. Rocky Mountain J. Math., 49(5):1449–1489, 2019.

[12] Thierry Coquand and Henrik Persson. Valuations and Dedekind’s Prague theorem. J. Pure
Appl. Algebra, 155(2–3):121–129, 2001.

[13] Thierry Coquand and Guo-Qiang Zhang. Sequents, frames, and completeness. In Peter G. Clote
and Helmut Schwichtenberg, editors, Computer Science Logic (Fischbachau, 2000), volume 1862
of Lecture Notes in Comput. Sci., pages 277–291. Springer, Berlin, 2000.

[14] Michel Coste, Henri Lombardi, and Marie-Françoise Roy. Dynamical method in algebra: Effective
Nullstellensätze. Ann. Pure Appl. Logic, 111(3):203–256, 2001.

[15] John Fisher and Marc Bezem. Skolem machines. Fund. Inform., 91(1):79–103, 2009.
[16] Ayana Hirata, Hajime Ishihara, Tatsuji Kawai, and Takako Nemoto. Equivalents of the finitary

non-deterministic inductive definitions. Ann. Pure Appl. Logic, 170(10):1256–1272, 2019.
[17] Hajime Ishihara and Takako Nemoto. Non-deterministic inductive definitions and fullness. In

D. Probst and P. Schuster, editors, Concepts of Proof in Mathematics, Philosophy, and Computer
Science, volume 6 of Ontos Mathematical Logic, pages 163–170. Walter de Gruyter, Berlin, 2016.

[18] Gregor Kemper and Ihsen Yengui. Valuative dimension and monomial orders. 2019. URL:
https://arxiv.org/abs/1906.12067.

[19] Henri Lombardi. Hidden constructions in abstract algebra. I. Integral dependance. J. Pure Appl.
Algebra, 167:259–267, 2002.

[20] Henri Lombardi and Claude Quitté. Commutative Algebra: Constructive Methods. Finite Projec-
tive Modules, volume 20 of Algebra and Applications. Springer Netherlands, Dordrecht, 2015.

[21] Christopher J. Mulvey and Joan Wick-Pelletier. A globalization of the Hahn–Banach theorem.
Adv. Math., 89:1–59, 1991.

[22] Sara Negri. Geometric rules in infinitary logic. In Arnon Avron on Semantics and Proof Theory

3

Resolving finite indeterminacy Schuster and Wessel

of Non-Classical Logics, Outstanding Contributions to Logic. Springer. Forthcoming.
[23] Sara Negri. Stone bases alias the constructive content of Stone representation. In Aldo Ursini and

Paolo Aglianò, editors, Logic and algebra. Proceedings of the international conference dedicated to
the memory of Roberto Magari, April 26–30, 1994, Pontignano, Italy, volume 180 of Lecture Notes
in Pure and Applied Mathematics, pages 617–636. Marcel Dekker, New York, 1996.

[24] Sara Negri, Jan von Plato, and Thierry Coquand. Proof-theoretical analysis of order relations.
Arch. Math. Logic, 43:297–309, 2004.

[25] Michael Rathjen. Remarks on Barr’s theorem. Proofs in geometric theories. In D. Probst and
P. Schuster, editors, Concepts of Proof in Mathematics, Philosophy, and Computer Science, vol-
ume 6 of Ontos Mathematical Logic, pages 347–374. Walter de Gruyter, Berlin, 2016.

[26] Davide Rinaldi. Formal Methods in the Theories of Rings and Domains. Doctoral dissertation,
Universität München, 2014.

[27] Davide Rinaldi, Peter Schuster, and Daniel Wessel. Eliminating disjunctions by disjunction elim-
ination. Indag. Math. (N.S.), 29(1):226–259, 2018. Communicated first in Bull. Symb. Logic 23
(2017), 181–200.

[28] Davide Rinaldi and Daniel Wessel. Extension by conservation. Sikorski’s theorem. Log. Methods
Comput. Sci., 14(4:8):1–17, 2018.

[29] Giovanni Sambin. Intuitionistic formal spaces—a first communication. In D. Skordev, editor,
Mathematical Logic and its Applications, Proc. Adv. Internat. Summer School Conf., Druzhba,
Bulgaria, 1986, pages 187–204. Plenum, New York, 1987.

[30] Giovanni Sambin. Some points in formal topology. Theoret. Comput. Sci., 305(1–3):347–408, 2003.
[31] Giovanni Sambin. The Basic Picture. Structures for Constructive Topology. Oxford Logic Guides.

Clarendon Press, Oxford, forthcoming.
[32] Konstantin Schlagbauer, Peter Schuster, and Daniel Wessel. Der Satz von Hahn–Banach per

Disjunktionselimination. Confluentes Math., 11(1):79–93, 2019.
[33] Peter Schuster, Daniel Wessel, and Ihsen Yengui. Dynamic evaluation of integrity and the com-

putational content of Krull’s lemma. 2019. Preprint.
[34] Dana Scott. Completeness and axiomatizability in many-valued logic. In Leon Henkin, John

Addison, C.C. Chang, William Craig, Dana Scott, and Robert Vaught, editors, Proceedings of
the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif.,
1971), pages 411–435. Amer. Math. Soc., Providence, RI, 1974.

[35] Sana Stojanović, Vesna Pavlović, and Predrag Janičić. A coherent logic based geometry theorem
prover capable of producing formal and readable proofs. In International Workshop on Automated
Deduction in Geometry, pages 201–220. Springer, 2010.

[36] Benno van den Berg. Non-deterministic inductive definitions. Arch. Math. Logic, 52(1–2):113–135,
2013.

[37] Daniel Wessel. Ordering groups constructively. Comm. Algebra, 47(12):4853–4873, 2019.
[38] Daniel Wessel. Point-free spectra of linear spreads. In S. Centrone, S. Negri, D. Sarikaya, and

P. Schuster, editors, Mathesis Universalis, Computability and Proof, Synthese Library, pages 353–
374. Springer, 2019.

[39] Ihsen Yengui. Constructive Commutative Algebra. Projective Modules over Polynomial Rings and
Dynamical Gröbner Bases, volume 2138 of Lecture Notes in Mathematics. Springer, Cham, 2015.

4

14 Terms, rewriting and types

187

Confluence in Higher-Order Theories

Gaspard Férey and Jean-Pierre Jouannaud

INRIA, LSV, ENS Paris-Saclay, Université Paris-Saclay, France

Introduction Extending conversion with user-defined higher-order rewrite rules is becoming
a standard in proof assistants based on intuitionistic type theory [2, 4]. In dependent type
theories however, confluence is often needed to prove that rewriting preserves key properties
of β-reduction such as type preservation, strong normalization, consistency and decidability of
type checking.

In a series of papers, we develop techniques based on van Oostroms decreasing diagrams [6],
that reduce confluence proofs to the checking of various forms of critical pairs for higher-order
rewrite rules extending β-reduction on pure lambda-terms. These results can be applied to
various encodings of type theories in Dedukti [4, 1], assuming they preserve types.

Higher-Order Rewriting Functional reductions on pure λ-terms can be enriched with
higher-order term rewriting. We use Klop’s framework which distinguishes a set of variables
used for abstractions, from a set of meta-variables with arities used for the higher-order rules.
Substituting a meta-variable requires enough abstractions in order to perform the associated
beta-reductions on site [5]. A term U with meta-variables MVar(U) is called a meta-term.

Definition 1 (Higher-Order Rewriting). A rewrite rule L−→R is a pair of meta-terms such

that L is a pattern and MVar(R) ⊆MVar(L). Then u
p−→

L→R
v iff u|p = Lγ and v = u[Rγ]p.

Higher-order rewriting doesn’t behave well with substitution: whenever σ−→γ, then

tσ−→−→ tγ, complicating the confluence proofs with β. It can however be extended by grouping

several steps together, yielding parallel reductions (at parallel positions), orthogonal reductions

(at overlap-free positions), and sub-rewriting :
p−→⊂ P

=⇒⊂
O
⊗=⇒⊂−→

≡
⊂=⇒

≡
⊂−→−→

σ−→ γ

tσ=⇒tγ
t=⇒u σ⊗=⇒ γ

tσ⊗=⇒uγ

t−→u ∀X ∈MVar(t)∀i (Xiσ ≡ Xγ)

tσ−→
≡
uγ

where t is a linearized copy of t obtained by renaming the i occurrence of meta-variable X into Xi.

Left-Linear Theories If R is a set of left-linear rewrite rules, we have ⇐=⊗
β
−→
R
⊆ =⇒
R
⇐=⊗
β

which is a decreasing diagram if we chose a label for β bigger than the labels for R.
This implies however that critical peaks may not rely on arbitrary β steps to be joined (only

those included in the substitutions for meta-variables used for higher-order rewriting survive).

Theorem 1 (Confluence). Let R be a left-linear rewrite system. The relation −→
R
∪ −→

β
is

confluent in the following three cases:

• R is terminating and locally confluent [3]

• labels of R-rewrites are smaller than those of β-rewrites, right-hand sides of rules have no
embedded meta-variables, and the parallel critical pairs of R have decreasing diagrams.

• labels of R-rewrites are biggest, and orthogonal critical pairs have a decreasing diagram.

In the latter two cases, R-rewrite steps use rule-labeling: the label of a step is the number
of the rule which is used (parallel and orthogonal steps must use a single rule at each step).

Confluence in Higher-Order Theories Férey and Jouannaud

Non-Left-Linear Theories The case of non-left-linear rules is counter-intuitive: Klop
showed that the confluence of β-reductions is not preserved by the rule F(X,X) → X. The
counter examples rely on fixpoints operators applied to instances of a non-linear left-hand side.
To achieve confluence in presence of such rules, one needs to restrict the set of terms considered.
For example, the rule above preserves the confluence of simply typed rules.

The idea is therefore to come up with a simple type system that will eliminate the counter-
examples, but accept, say, dependently typed terms. The system we present below, which uses
natural number as base types, accepts all pure λ-terms. However, when given an environment
defining constants, not all simply typable terms are accepted yet. We illustrate the idea with
the rule F (X,X)→ X. Variables and occurrences of F are decorated as in xn and Fn. Meta-
variables are not decorated. The typing system is as follows:

xn : n Fn : n→ n→ n+ 1

s ∈ S
s : 0

t : n u : k

(t u) : max(n, k)

t : k ≤ n
λxn.t : n

t : n→ A u : k ≤ n
(t u) : A

t : A→ k

λxn.t : n→ A→ max(k, n)

Note that any term that does not contain the symbol F, such as the infamous (λx.(x x) λx.(x x)),
can be typed with 0 using the first five rules if we choose to decorate all variables with 0. Hence,
all pure λ-terms are accepted by the typing system. Occurences of applications of F lift the
type of their arguments up, so that, for an example, λz.(λx.(F x z) λy.(F y z)) : 0 → 2 if we
chose the decoration z0, y0, x1.

In fact whenever t : n is derivable, then n is a bound by the maximal depth of nested
F symbols in subterms of t and their reducts. As a consequence, the type of a term is non-
increasing by taking subterms and β-reductions and F -reductions. An important consequence
is that occurrences of F in a typable term t : n are fully applied, and decorated by some k < n.
So, t = t[(Fk u v)]p : n, and u : l < n and v : l′ < n (l, l′, not k, because of subtyping).

Moving to the confluence proof, we can label β (resp. F) -reductions with the decoration

n of the corresponding abstracted variable (resp. F symbol), hence defining
n−→
β

and
n−→
F

. We

then apply van Oostrom’s decreasing diagram technique to the rewrite relations
n
⊗=⇒
β

, and
n

=⇒
≡n

,

where ≡n is the congruence defined by all reductions of label smaller than n strictly. The label
of a step, as just defined, will serve as its label in van Oostrom’s decreasing diagram technique.

The above properties guarantee then that reductions below non-linear meta-variables in F -
redices have a label strictly less than that of the F reduction above. This provides the following
decreasing diagrams:

n⇐=
≡n

k<n
=⇒
≡k

⊆ k<n⇐=
≡k

n
=⇒
≡n

n⇐=
≡n

n
=⇒
≡n

⊆ n⇐=
≡n

n
=⇒
≡n

n
⇐=⊗
β

n
⊗=⇒
β
⊆

n
⊗=⇒
β

n
⇐=⊗
β

Theorem 2. Rewriting with the non-left-linear rule F X X −→ a preserves the confluence of

β on typable decorated terms.

The theorem can be generalized to a higher-order rewrite system R, even in presence of
critical pairs, provided the type of the right-hand side of rules is at most equal to the type of
their left-hand side, and the (typable) critical pairs have decreasing diagrams.

The question which has not been resolved yet is whether confluence in our type system
implies confluence for simply typed terms, or for dependently typed terms, both are important
for applications. In general, the answer is likely to be negative, and it will then be necessary
to modify the type system to get more typable terms. Our approach, we believe, is promising.

2

Confluence in Higher-Order Theories Férey and Jouannaud

References

[1] Ali Assaf, Guillaume Burel, Raphal Cauderlier, Gilles Dowek, Catherine Dubois, Frdric Gilbert,
Pierre Halmagrand, Olivier Hermant, and Ronan Saillard. Dedukti: a Logical Framework based on
the lambda-pi-Calculus Modulo Theory. draft, INRIA, 2019.

[2] Jesper Cockx, Nicolas Tabareau, and Théo Winterhalter. How to tame your rewrite rules, 2018.
Draft.

[3] Gaspard Ferey and Jean-Pierre Jouannaud. Confluence in (un)typed higher-order type theories i.
draft. hal-, INRIA, march 2019. available from http://dedukti.gforge.inria.fr/.

[4] Gilles Dowek at all. The Dedukti system, 2016. Available from http://dedukti.gforge.inria.fr/.

[5] J.W. Klop. Combinatory Reduction Systems. Number 127 in Mathematical Centre Tracts. CWI,
Amsterdam, The Netherlands, 1980. PhD Thesis.

[6] Vincent van Oostrom. Confluence by decreasing diagrams. Theor. Comput. Sci., 126(2):259–280,
1994.

3

Type safety of rewriting rules in dependent types
Frédéric Blanqui

Université Paris-Saclay, ENS Paris-Saclay, CNRS, Inria
Laboratoire Spécification et Vérification, 94235, Cachan, France

Abstract

The expressiveness of dependent type theory can be extended by identifying types modulo
some additional computation rules [BFG97, Bla05, CA]. But, for preserving the decidability of
type-checking or the logical consistency of the system, one must make sure that those user-defined
rewriting rules preserve typing. In this talk, I will present a new method to check that property
using Knuth-Bendix completion. A prototype implementation for the Dedukti proof assistant is
available on https://github.com/wujuihsuan2016/lambdapi/tree/sr.

We consider the simplest dependent type theory λΠ but identify types equivalent modulo
β-reduction and some set R of user-defined rewriting rules.

The relation →R generated by R preserves typing if, for all rule l → r ∈ R, environments
Γ, substitutions σ and terms A, Γ ` rσ : A whenever Γ ` lσ : A.

A first idea is to require:
(*) there exist ∆ and B such that ∆ ` l : B and ∆ ` r : B,

but this condition is not sufficient in general:

Example 1. Consider the rule f(xy) → y with f : B ⇒ B. In the environment ∆ =
x : B ⇒ B, y : B, we have ∆ ` l : B and ∆ ` r : B. However, in the environment Γ =
x : A⇒ B, y : A, we have Γ ` l : B and Γ ` r : A.

The condition (*) is sufficient for proving subject-reduction when the rule left-hand side is
a non-variable simply-typed first-order term [BFG97, Proposition 3.13], a notion that can be
easily extended to λΠ.

However, (*) is not satisfactory in the context of dependent types. Indeed, when function
symbols have dependent types, it often happens that a term is typable only if it is non-linear.
And, with non-left-linear rewriting rules, → =→β ∪→R is generally not confluent on untyped
terms [Klo80], while there exist many confluence criteria for left-linear rewriting systems [vO94].

Example 2. Consider the following rule to define the tail function on vectors:

tail n (cons x p v)→ v

where tail : ∀n : N,V (sn)⇒ V n, V : N ⇒ ?, nil : V 0, cons : α⇒ ∀n : N,V n⇒ V (sn), α : ?,
0 : N and s : N ⇒ N . For the left-hand side to be typable, we need p = n because tail n
expects an argument of type V (sn) but cons x p v is of type V (sp). Yet, the rule preserves
typing. Indeed, assume that there is an environment Γ, a substitution σ and a term A such
that Γ ` tail nσ (cons xσ pσ vσ) : A. By inversion of typing rules, we get V (nσ) ' A, Γ ` A : s
for some sort s, V (spσ) ' V (snσ) and Γ ` vσ : V pσ, where ' is the smallest congruence
containing →. Assume now that V and s are undefined, that is, there is no rule of R of the
form V t→ u or st→ u. Then, by confluence, nσ ' pσ. Therefore, V pσ ' A and Γ ` vσ : A.

Hence, that a rewriting rule l → r preserves typing does not mean that its left-hand side l
must be typable. Actually, if no instance of l is typable, then l → r trivially preserves typing
(since it can never be applied)! The point is therefore to check that any typable instance of
l→ r preserves typing [Bla05].

easychair: Running title head is undefined. easychair: Running author head is undefined.

The new algorithm that we propose for checking that a rule l→ r preserves typing proceeds
in three steps. First, we generate conversion constraints that are satisfied by every typable
instance of l, by taking a fresh variable ŷ for the type of a variable y:

y ↑ ŷ [∅]
f : ∀x1 : T1, . . . ,∀xn : Tn, U t1 ↑ A1[E1] tn ↑ An[En]

ft1 . . . tn ↑ Uσ[E1 ∪ . . . ∪ En ∪ {A1 = T1σ, . . . , An = Tnσ}]
where σ = {(x1, t1), . . . , (xn, tn)}

Example 3. We have cons x p v ↑ V (sp)[E1] where E1 = {x̂ = α, p̂ = N, v̂ = V p},
and tail n (cons x p v) ↑ V n[E2] where E2 = E1 ∪ {n̂ = N,V (sp) = V (sn)}. This means that,
if σ is a substitution and (tail n (cons x p v))σ is typable, then V (spσ) ' V (snσ).

Second, we simplify the conversion constraints by taking into account the injectivity of the
product and other function symbols:

D] {t = u} ; D ∪ {t′ = u′} if t→∗ t′ and u→∗ u′
D] {∀x : t1, t2 = ∀x : u1, u2} ; D ∪ {t1 = u1, t2 = u2} if x is fresh
D] {ft1 . . . tn = fu1 . . . un} ; D ∪ {ti = ui | i ∈ I}

if f is I-injective and ∀i /∈ I, ti ' ui
Example 4. In the previous example, we can replace the constraint V (sp) = V (sn) by p = n
if V and s are not defined by any rewriting rules.

Finally, we check whether r has the same type as l in the type system where the conversion
relation is extended with the equational theory generated by the constraints inferred in the
first step. For this system to be decidable and implementable using Dedukti itself, we use
Knuth-Bendix completion [KB70] to replace the set of conversion constraints by an equivalent
but convergent (i.e. terminating and confluent) set of rewriting rules, which always terminates
on closed equations when one uses a total order on function symbols [BN98].

Example 5. By taking x̂ > v̂ > p̂ > n̂ > V > α > N > s > p > n (but any other total order
would work as well), Knuth-Bendix completion yields the rewriting system D = {x̂ → α, p̂ →
N, v̂ → V n, n̂ → N, p → n}. It is then possible to prove that →β ∪ →R ∪ →D is convergent
if →β ∪→R is convergent, R is left-linear and V and s are undefined. Finally, we are left to
prove that the type of v, v̂, is equivalent to V n, which is the case since V n is the →D-normal
form of v̂.

References
[BN98] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.
[BFG97] F. Barbanera, M. Fernández, and H. Geuvers. Modularity of strong normalization in the

algebraic-λ-cube. Journal of Functional Programming, 7(6):613–660, 1997.
[Bla05] F. Blanqui. Definitions by rewriting in the calculus of constructions. Mathematical Structures

in Computer Science, 15(1):37–92, 2005.
[CA] J. Cockx and A. Abel. Sprinkles of Extensionality for Your Vanilla Type Theory (abstract).

Presented at TYPES’2016.
[KB70] D. Knuth and P. Bendix. Simple word problems in universal algebra. In Computational

problems in abstract algebra, , p. 263–297. Pergamon Press, 1970.
[Klo80] J. W. Klop. Combinatory reduction systems. PhD thesis, Utrecht Universiteit, NL, 1980.

Published as Mathematical Center Tract 129.
[vO94] V. van Oostrom. Confluence for abstract and higher-order rewriting. PhD thesis, Vrije Uni-

versiteit Amsterdam, NL, 1994.

2

